伪欧几里德空间中超二次曲面的纯滚动运动

André Marques, Fátima Silva Leite
{"title":"伪欧几里德空间中超二次曲面的纯滚动运动","authors":"André Marques, Fátima Silva Leite","doi":"10.3934/jgm.2021033","DOIUrl":null,"url":null,"abstract":"<p style='text-indent:20px;'>This paper is devoted to rolling motions of one manifold over another of equal dimension, subject to the nonholonomic constraints of no-slip and no-twist, assuming that these motions occur inside a pseudo-Euclidean space. We first introduce a definition of rolling map adjusted to this situation, which generalizes the classical definition of Sharpe [<xref ref-type=\"bibr\" r>26</xref>] for submanifolds of an Euclidean space. We also prove some important properties of these rolling maps. After presenting the general framework, we analyse the particular rolling of hyperquadrics embedded in pseudo-Euclidean spaces. The central topic is the rolling of a pseudo-hyperbolic space over the affine space associated with its tangent space at a point. We derive the kinematic equations, as well as the corresponding explicit solutions for two specific cases, and prove the existence of a rolling map along any curve in that rolling space. Rolling of a pseudo-hyperbolic space on another and rolling of pseudo-spheres are equally treated. Finally, for the central theme, we write the kinematic equations as a control system evolving on a certain Lie group and prove its controllability. The choice of the controls corresponds to the choice of a rolling curve.</p>","PeriodicalId":501380,"journal":{"name":"Communications in Analysis and Mechanics","volume":"257 ","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2022-01-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Pure rolling motion of hyperquadrics in pseudo-Euclidean spaces\",\"authors\":\"André Marques, Fátima Silva Leite\",\"doi\":\"10.3934/jgm.2021033\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p style='text-indent:20px;'>This paper is devoted to rolling motions of one manifold over another of equal dimension, subject to the nonholonomic constraints of no-slip and no-twist, assuming that these motions occur inside a pseudo-Euclidean space. We first introduce a definition of rolling map adjusted to this situation, which generalizes the classical definition of Sharpe [<xref ref-type=\\\"bibr\\\" r>26</xref>] for submanifolds of an Euclidean space. We also prove some important properties of these rolling maps. After presenting the general framework, we analyse the particular rolling of hyperquadrics embedded in pseudo-Euclidean spaces. The central topic is the rolling of a pseudo-hyperbolic space over the affine space associated with its tangent space at a point. We derive the kinematic equations, as well as the corresponding explicit solutions for two specific cases, and prove the existence of a rolling map along any curve in that rolling space. Rolling of a pseudo-hyperbolic space on another and rolling of pseudo-spheres are equally treated. Finally, for the central theme, we write the kinematic equations as a control system evolving on a certain Lie group and prove its controllability. The choice of the controls corresponds to the choice of a rolling curve.</p>\",\"PeriodicalId\":501380,\"journal\":{\"name\":\"Communications in Analysis and Mechanics\",\"volume\":\"257 \",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2022-01-12\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Communications in Analysis and Mechanics\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.3934/jgm.2021033\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Communications in Analysis and Mechanics","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.3934/jgm.2021033","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

<p style='text-indent:20px;'>本文研究在非完整的无滑移和无扭转约束下,一个流形在另一个等维流形上的滚动运动,假设这些运动发生在伪欧几里德空间内。我们首先引入了针对这种情况的滚动映射的定义,它推广了经典的欧几里得空间子流形Sharpe [<xref ref-type="bibr" >26</xref>]的定义。我们还证明了这些滚动映射的一些重要性质。在给出一般框架之后,我们分析了嵌入在伪欧几里德空间中的超二次曲面的特殊滚动问题。中心主题是伪双曲空间在仿射空间上的滚动,仿射空间与其切线空间在一点上相关联。导出了两种特殊情况下的运动方程和相应的显式解,并证明了该滚动空间中任意曲线上的滚动映射的存在性。伪双曲空间在另一个伪双曲空间上的滚动与伪球面的滚动是同等对待的。最后,对于中心主题,我们将运动学方程写成在某李群上演化的控制系统,并证明了其可控性。控制的选择对应于滚动曲线的选择。</p>
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Pure rolling motion of hyperquadrics in pseudo-Euclidean spaces
<p style='text-indent:20px;'>This paper is devoted to rolling motions of one manifold over another of equal dimension, subject to the nonholonomic constraints of no-slip and no-twist, assuming that these motions occur inside a pseudo-Euclidean space. We first introduce a definition of rolling map adjusted to this situation, which generalizes the classical definition of Sharpe [<xref ref-type="bibr" r>26</xref>] for submanifolds of an Euclidean space. We also prove some important properties of these rolling maps. After presenting the general framework, we analyse the particular rolling of hyperquadrics embedded in pseudo-Euclidean spaces. The central topic is the rolling of a pseudo-hyperbolic space over the affine space associated with its tangent space at a point. We derive the kinematic equations, as well as the corresponding explicit solutions for two specific cases, and prove the existence of a rolling map along any curve in that rolling space. Rolling of a pseudo-hyperbolic space on another and rolling of pseudo-spheres are equally treated. Finally, for the central theme, we write the kinematic equations as a control system evolving on a certain Lie group and prove its controllability. The choice of the controls corresponds to the choice of a rolling curve.</p>
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信