标准问题

Enrico Coiera
{"title":"标准问题","authors":"Enrico Coiera","doi":"arxiv-2304.09114","DOIUrl":null,"url":null,"abstract":"Crafting, adhering to, and maintaining standards is an ongoing challenge.\nThis paper uses a framework based on common models to explore the standard\nproblem: the impossibility of creating, implementing or maintain definitive\ncommon models in an open system. The problem arises from uncertainty driven by\nvariations in operating context, standard quality, differences in\nimplementation, and drift over time. Fitting work by conformance services\nrepairs these gaps between a standard and what is required for interoperation,\nusing several strategies: (a) Universal conformance (all agents access the same\nstandard); (b) Mediated conformance (an interoperability layer supports\nheterogeneous agents) and (c) Localized conformance, (autonomous adaptive\nagents manage their own needs). Conformance methods include incremental design,\nmodular design, adaptors, and creating interactive and adaptive agents. Machine\nlearning should have a major role in adaptive fitting. Choosing a conformance\nservice depends on the stability and homogeneity of shared tasks, and whether\ncommon models are shared ahead of time or are adjusted at task time. This\nanalysis thus decouples interoperability and standardization. While standards\nfacilitate interoperability, interoperability is achievable without\nstandardization.","PeriodicalId":501310,"journal":{"name":"arXiv - CS - Other Computer Science","volume":"47 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2023-04-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"The Standard Problem\",\"authors\":\"Enrico Coiera\",\"doi\":\"arxiv-2304.09114\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Crafting, adhering to, and maintaining standards is an ongoing challenge.\\nThis paper uses a framework based on common models to explore the standard\\nproblem: the impossibility of creating, implementing or maintain definitive\\ncommon models in an open system. The problem arises from uncertainty driven by\\nvariations in operating context, standard quality, differences in\\nimplementation, and drift over time. Fitting work by conformance services\\nrepairs these gaps between a standard and what is required for interoperation,\\nusing several strategies: (a) Universal conformance (all agents access the same\\nstandard); (b) Mediated conformance (an interoperability layer supports\\nheterogeneous agents) and (c) Localized conformance, (autonomous adaptive\\nagents manage their own needs). Conformance methods include incremental design,\\nmodular design, adaptors, and creating interactive and adaptive agents. Machine\\nlearning should have a major role in adaptive fitting. Choosing a conformance\\nservice depends on the stability and homogeneity of shared tasks, and whether\\ncommon models are shared ahead of time or are adjusted at task time. This\\nanalysis thus decouples interoperability and standardization. While standards\\nfacilitate interoperability, interoperability is achievable without\\nstandardization.\",\"PeriodicalId\":501310,\"journal\":{\"name\":\"arXiv - CS - Other Computer Science\",\"volume\":\"47 1\",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2023-04-17\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"arXiv - CS - Other Computer Science\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/arxiv-2304.09114\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"arXiv - CS - Other Computer Science","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/arxiv-2304.09114","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

制定、遵守和维护标准是一个持续的挑战。本文使用一个基于公共模型的框架来探讨标准问题:在开放系统中不可能创建、实现或维护确定的公共模型。问题产生于操作环境的变化、标准质量、实施的差异和随时间的漂移所导致的不确定性。一致性服务的拟合工作使用几种策略修复了标准与互操作所需之间的这些差距:(a)普遍一致性(所有代理访问相同的标准);(b)中介一致性(支持异构代理的互操作性层)和(c)本地化一致性(自主自适应代理管理自己的需求)。一致性方法包括增量设计、模块化设计、适配器以及创建交互式和自适应代理。机器学习应该在自适应拟合中发挥重要作用。选择一致性服务取决于共享任务的稳定性和同质性,以及公共模型是提前共享还是在任务时调整。因此,这种分析将互操作性和标准化解耦。虽然标准促进了互操作性,但互操作性是可以在没有标准化的情况下实现的。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
The Standard Problem
Crafting, adhering to, and maintaining standards is an ongoing challenge. This paper uses a framework based on common models to explore the standard problem: the impossibility of creating, implementing or maintain definitive common models in an open system. The problem arises from uncertainty driven by variations in operating context, standard quality, differences in implementation, and drift over time. Fitting work by conformance services repairs these gaps between a standard and what is required for interoperation, using several strategies: (a) Universal conformance (all agents access the same standard); (b) Mediated conformance (an interoperability layer supports heterogeneous agents) and (c) Localized conformance, (autonomous adaptive agents manage their own needs). Conformance methods include incremental design, modular design, adaptors, and creating interactive and adaptive agents. Machine learning should have a major role in adaptive fitting. Choosing a conformance service depends on the stability and homogeneity of shared tasks, and whether common models are shared ahead of time or are adjusted at task time. This analysis thus decouples interoperability and standardization. While standards facilitate interoperability, interoperability is achievable without standardization.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信