求助PDF
{"title":"重力驱动乳化分离用聚四氟乙烯/碳(PTFE/C)复合膜等效泡沫的设计与制备","authors":"Xiaoming Guo, Di Lan, Yue Wang","doi":"10.1002/pi.6593","DOIUrl":null,"url":null,"abstract":"<p>Herein, the concept of a membrane-equivalent foam (MEF) with equivalent characteristics to a separated multilayer membrane is proposed and elaborated to mitigate the conflict between efficiency and selectivity in emulsion separation. Porous polytetrafluoroethylene/carbon (PTFE/C) composite MEF with a two-level microporous structure (bubble pores and ice-templated pores) was prepared successfully, derived from a PTFE/glutaraldehyde crosslinked polyvinyl alcohol (PVAG) composite foam green body. The PVAG-based <i>in situ</i> carbon was analyzed as composed mainly of amorphous carbon. The bubble pores were observed to be interconnected by ice-templated pores. The porosity of the porous PTFE/C composite MEF reached a remarkable value of 73.35%. Corresponding to <i>m</i>(PTFE)/<i>m</i>(PVA) values of 14/1, 12/1, 10/1 and 8/1, the average pore sizes of the bubble pores were 32.99, 44.31, 47.33 and 48.01 μm, and the average sizes of the ice-templated pores were about 2.24, 2.77, 3.02 and 3.47 μm, respectively. Meanwhile, the porous PTFE/C composite MEF exhibited near superhydrophobicity in air and superhydrophobicity under oil. In gravity-driven water−oil emulsion separation tests, the oil flux was up to 3541 L h<sup>−1</sup> m<sup>−2</sup> and the separation efficiency reached more than 99.52%. After 20 cycles of testing, the oil flux and separation efficiency remained stable. The membrane-equivalent thickness of the samples from PTFE/C-m1 to PTFE/C-m4 were below 3.47, 4.26, 0.58 and 0.30 nm, respectively, which is about 10<sup>−7</sup>–10<sup>−6</sup> times lower than the height of porous PTFE/C composite MEF. It is reasonable to believe that porous PTFE/C composite MEF could effectively mitigate the ‘trade-off’ effect. © 2023 Society of Industrial Chemistry.</p>","PeriodicalId":20404,"journal":{"name":"Polymer International","volume":"73 4","pages":"287-298"},"PeriodicalIF":2.9000,"publicationDate":"2023-11-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Design and preparation of polytetrafluoroethylene/carbon (PTFE/C) composite membrane-equivalent foam for gravity-driven emulsion separation\",\"authors\":\"Xiaoming Guo, Di Lan, Yue Wang\",\"doi\":\"10.1002/pi.6593\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>Herein, the concept of a membrane-equivalent foam (MEF) with equivalent characteristics to a separated multilayer membrane is proposed and elaborated to mitigate the conflict between efficiency and selectivity in emulsion separation. Porous polytetrafluoroethylene/carbon (PTFE/C) composite MEF with a two-level microporous structure (bubble pores and ice-templated pores) was prepared successfully, derived from a PTFE/glutaraldehyde crosslinked polyvinyl alcohol (PVAG) composite foam green body. The PVAG-based <i>in situ</i> carbon was analyzed as composed mainly of amorphous carbon. The bubble pores were observed to be interconnected by ice-templated pores. The porosity of the porous PTFE/C composite MEF reached a remarkable value of 73.35%. Corresponding to <i>m</i>(PTFE)/<i>m</i>(PVA) values of 14/1, 12/1, 10/1 and 8/1, the average pore sizes of the bubble pores were 32.99, 44.31, 47.33 and 48.01 μm, and the average sizes of the ice-templated pores were about 2.24, 2.77, 3.02 and 3.47 μm, respectively. Meanwhile, the porous PTFE/C composite MEF exhibited near superhydrophobicity in air and superhydrophobicity under oil. In gravity-driven water−oil emulsion separation tests, the oil flux was up to 3541 L h<sup>−1</sup> m<sup>−2</sup> and the separation efficiency reached more than 99.52%. After 20 cycles of testing, the oil flux and separation efficiency remained stable. The membrane-equivalent thickness of the samples from PTFE/C-m1 to PTFE/C-m4 were below 3.47, 4.26, 0.58 and 0.30 nm, respectively, which is about 10<sup>−7</sup>–10<sup>−6</sup> times lower than the height of porous PTFE/C composite MEF. It is reasonable to believe that porous PTFE/C composite MEF could effectively mitigate the ‘trade-off’ effect. © 2023 Society of Industrial Chemistry.</p>\",\"PeriodicalId\":20404,\"journal\":{\"name\":\"Polymer International\",\"volume\":\"73 4\",\"pages\":\"287-298\"},\"PeriodicalIF\":2.9000,\"publicationDate\":\"2023-11-17\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Polymer International\",\"FirstCategoryId\":\"92\",\"ListUrlMain\":\"https://onlinelibrary.wiley.com/doi/10.1002/pi.6593\",\"RegionNum\":4,\"RegionCategory\":\"化学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"POLYMER SCIENCE\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Polymer International","FirstCategoryId":"92","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1002/pi.6593","RegionNum":4,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"POLYMER SCIENCE","Score":null,"Total":0}
引用次数: 0
引用
批量引用