给定接触角的曲线域平均曲率流的最小运动格式及其计算

IF 1 3区 数学 Q1 MATHEMATICS
Tokuhiro Eto, Yoshikazu Giga
{"title":"给定接触角的曲线域平均曲率流的最小运动格式及其计算","authors":"Tokuhiro Eto,&nbsp;Yoshikazu Giga","doi":"10.1007/s10231-023-01398-9","DOIUrl":null,"url":null,"abstract":"<div><p>We introduce a capillary Chambolle-type scheme for mean curvature flow with prescribed contact angle. Our scheme includes a capillary functional instead of just the total variation. We show that the scheme is well-defined and has consistency with the energy minimizing scheme of Almgren–Taylor–Wang type. Moreover, for a planar motion in a strip, we give several examples of numerical computation of this scheme based on the split Bregman method instead of a duality method.</p></div>","PeriodicalId":8265,"journal":{"name":"Annali di Matematica Pura ed Applicata","volume":null,"pages":null},"PeriodicalIF":1.0000,"publicationDate":"2023-11-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://link.springer.com/content/pdf/10.1007/s10231-023-01398-9.pdf","citationCount":"0","resultStr":"{\"title\":\"On a minimizing movement scheme for mean curvature flow with prescribed contact angle in a curved domain and its computation\",\"authors\":\"Tokuhiro Eto,&nbsp;Yoshikazu Giga\",\"doi\":\"10.1007/s10231-023-01398-9\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>We introduce a capillary Chambolle-type scheme for mean curvature flow with prescribed contact angle. Our scheme includes a capillary functional instead of just the total variation. We show that the scheme is well-defined and has consistency with the energy minimizing scheme of Almgren–Taylor–Wang type. Moreover, for a planar motion in a strip, we give several examples of numerical computation of this scheme based on the split Bregman method instead of a duality method.</p></div>\",\"PeriodicalId\":8265,\"journal\":{\"name\":\"Annali di Matematica Pura ed Applicata\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":1.0000,\"publicationDate\":\"2023-11-18\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://link.springer.com/content/pdf/10.1007/s10231-023-01398-9.pdf\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Annali di Matematica Pura ed Applicata\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://link.springer.com/article/10.1007/s10231-023-01398-9\",\"RegionNum\":3,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"MATHEMATICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Annali di Matematica Pura ed Applicata","FirstCategoryId":"100","ListUrlMain":"https://link.springer.com/article/10.1007/s10231-023-01398-9","RegionNum":3,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 0

摘要

本文介绍了具有规定接触角的平均曲率流的毛细管尚波勒型格式。我们的方案包括毛细管函数,而不仅仅是总变异。我们证明了该格式定义良好,并且与Almgren-Taylor-Wang型的能量最小化格式一致。此外,对于条带内的平面运动,我们给出了几个基于分裂Bregman方法而不是对偶方法的数值计算实例。
本文章由计算机程序翻译,如有差异,请以英文原文为准。

On a minimizing movement scheme for mean curvature flow with prescribed contact angle in a curved domain and its computation

On a minimizing movement scheme for mean curvature flow with prescribed contact angle in a curved domain and its computation

We introduce a capillary Chambolle-type scheme for mean curvature flow with prescribed contact angle. Our scheme includes a capillary functional instead of just the total variation. We show that the scheme is well-defined and has consistency with the energy minimizing scheme of Almgren–Taylor–Wang type. Moreover, for a planar motion in a strip, we give several examples of numerical computation of this scheme based on the split Bregman method instead of a duality method.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
2.10
自引率
10.00%
发文量
99
审稿时长
>12 weeks
期刊介绍: This journal, the oldest scientific periodical in Italy, was originally edited by Barnaba Tortolini and Francesco Brioschi and has appeared since 1850. Nowadays it is managed by a nonprofit organization, the Fondazione Annali di Matematica Pura ed Applicata, c.o. Dipartimento di Matematica "U. Dini", viale Morgagni 67A, 50134 Firenze, Italy, e-mail annali@math.unifi.it). A board of Italian university professors governs the Fondazione and appoints the editors of the journal, whose responsibility it is to supervise the refereeing process. The names of governors and editors appear on the front page of each issue. Their addresses appear in the title pages of each issue.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信