涉及指数增长的线性耦合系统基态的存在性和渐近行为

IF 1 3区 数学 Q1 MATHEMATICS
Uberlandio B. Severo, José Carlos de Albuquerque, Edjane O. dos Santos
{"title":"涉及指数增长的线性耦合系统基态的存在性和渐近行为","authors":"Uberlandio B. Severo,&nbsp;José Carlos de Albuquerque,&nbsp;Edjane O. dos Santos","doi":"10.1007/s10231-023-01407-x","DOIUrl":null,"url":null,"abstract":"<div><p>In this paper we study the following class of linearly coupled systems in the plane: </p><div><div><span>$$\\begin{aligned} {\\left\\{ \\begin{array}{ll} -\\Delta u + u = f_1(u) + \\lambda v,\\quad \\text{ in }\\quad \\mathbb {R}^2, \\\\ -\\Delta v + v = f_2(v) + \\lambda u,\\quad \\text{ in }\\quad \\mathbb {R}^2, \\\\ \\end{array}\\right. } \\end{aligned}$$</span></div></div><p>where <span>\\(f_{1}, f_{2}\\)</span> are continuous functions with critical exponential growth in the sense of Trudinger-Moser inequality and <span>\\(0&lt;\\lambda &lt;1\\)</span> is a parameter. First, for any <span>\\(\\lambda \\in (0,1)\\)</span>, by using minimization arguments and minimax estimates we prove the existence of a positive ground state solution. Moreover, we study the asymptotic behavior of these solutions when <span>\\(\\lambda \\rightarrow 0^{+}\\)</span>. This class of systems can model phenomena in nonlinear optics and in plasma physics.</p></div>","PeriodicalId":8265,"journal":{"name":"Annali di Matematica Pura ed Applicata","volume":null,"pages":null},"PeriodicalIF":1.0000,"publicationDate":"2023-12-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Existence and asymptotic behavior of ground states for linearly coupled systems involving exponential growth\",\"authors\":\"Uberlandio B. Severo,&nbsp;José Carlos de Albuquerque,&nbsp;Edjane O. dos Santos\",\"doi\":\"10.1007/s10231-023-01407-x\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>In this paper we study the following class of linearly coupled systems in the plane: </p><div><div><span>$$\\\\begin{aligned} {\\\\left\\\\{ \\\\begin{array}{ll} -\\\\Delta u + u = f_1(u) + \\\\lambda v,\\\\quad \\\\text{ in }\\\\quad \\\\mathbb {R}^2, \\\\\\\\ -\\\\Delta v + v = f_2(v) + \\\\lambda u,\\\\quad \\\\text{ in }\\\\quad \\\\mathbb {R}^2, \\\\\\\\ \\\\end{array}\\\\right. } \\\\end{aligned}$$</span></div></div><p>where <span>\\\\(f_{1}, f_{2}\\\\)</span> are continuous functions with critical exponential growth in the sense of Trudinger-Moser inequality and <span>\\\\(0&lt;\\\\lambda &lt;1\\\\)</span> is a parameter. First, for any <span>\\\\(\\\\lambda \\\\in (0,1)\\\\)</span>, by using minimization arguments and minimax estimates we prove the existence of a positive ground state solution. Moreover, we study the asymptotic behavior of these solutions when <span>\\\\(\\\\lambda \\\\rightarrow 0^{+}\\\\)</span>. This class of systems can model phenomena in nonlinear optics and in plasma physics.</p></div>\",\"PeriodicalId\":8265,\"journal\":{\"name\":\"Annali di Matematica Pura ed Applicata\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":1.0000,\"publicationDate\":\"2023-12-05\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Annali di Matematica Pura ed Applicata\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://link.springer.com/article/10.1007/s10231-023-01407-x\",\"RegionNum\":3,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"MATHEMATICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Annali di Matematica Pura ed Applicata","FirstCategoryId":"100","ListUrlMain":"https://link.springer.com/article/10.1007/s10231-023-01407-x","RegionNum":3,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 0

摘要

本文研究平面上的线性耦合系统:$$\begin{aligned} {\left\{ \begin{array}{ll} -\Delta u + u = f_1(u) + \lambda v,\quad \text{ in }\quad \mathbb {R}^2, \\ -\Delta v + v = f_2(v) + \lambda u,\quad \text{ in }\quad \mathbb {R}^2, \\ \end{array}\right. } \end{aligned}$$,其中\(f_{1}, f_{2}\)是具有Trudinger-Moser不等式意义上的临界指数增长的连续函数,\(0<\lambda <1\)是一个参数。首先,对于任意\(\lambda \in (0,1)\),通过最小化参数和极大极小估计证明了正基态解的存在性。此外,我们研究了这些解在\(\lambda \rightarrow 0^{+}\)时的渐近行为。这类系统可以模拟非线性光学和等离子体物理中的现象。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Existence and asymptotic behavior of ground states for linearly coupled systems involving exponential growth

In this paper we study the following class of linearly coupled systems in the plane:

$$\begin{aligned} {\left\{ \begin{array}{ll} -\Delta u + u = f_1(u) + \lambda v,\quad \text{ in }\quad \mathbb {R}^2, \\ -\Delta v + v = f_2(v) + \lambda u,\quad \text{ in }\quad \mathbb {R}^2, \\ \end{array}\right. } \end{aligned}$$

where \(f_{1}, f_{2}\) are continuous functions with critical exponential growth in the sense of Trudinger-Moser inequality and \(0<\lambda <1\) is a parameter. First, for any \(\lambda \in (0,1)\), by using minimization arguments and minimax estimates we prove the existence of a positive ground state solution. Moreover, we study the asymptotic behavior of these solutions when \(\lambda \rightarrow 0^{+}\). This class of systems can model phenomena in nonlinear optics and in plasma physics.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
2.10
自引率
10.00%
发文量
99
审稿时长
>12 weeks
期刊介绍: This journal, the oldest scientific periodical in Italy, was originally edited by Barnaba Tortolini and Francesco Brioschi and has appeared since 1850. Nowadays it is managed by a nonprofit organization, the Fondazione Annali di Matematica Pura ed Applicata, c.o. Dipartimento di Matematica "U. Dini", viale Morgagni 67A, 50134 Firenze, Italy, e-mail annali@math.unifi.it). A board of Italian university professors governs the Fondazione and appoints the editors of the journal, whose responsibility it is to supervise the refereeing process. The names of governors and editors appear on the front page of each issue. Their addresses appear in the title pages of each issue.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信