Uberlandio B. Severo, José Carlos de Albuquerque, Edjane O. dos Santos
{"title":"涉及指数增长的线性耦合系统基态的存在性和渐近行为","authors":"Uberlandio B. Severo, José Carlos de Albuquerque, Edjane O. dos Santos","doi":"10.1007/s10231-023-01407-x","DOIUrl":null,"url":null,"abstract":"<div><p>In this paper we study the following class of linearly coupled systems in the plane: </p><div><div><span>$$\\begin{aligned} {\\left\\{ \\begin{array}{ll} -\\Delta u + u = f_1(u) + \\lambda v,\\quad \\text{ in }\\quad \\mathbb {R}^2, \\\\ -\\Delta v + v = f_2(v) + \\lambda u,\\quad \\text{ in }\\quad \\mathbb {R}^2, \\\\ \\end{array}\\right. } \\end{aligned}$$</span></div></div><p>where <span>\\(f_{1}, f_{2}\\)</span> are continuous functions with critical exponential growth in the sense of Trudinger-Moser inequality and <span>\\(0<\\lambda <1\\)</span> is a parameter. First, for any <span>\\(\\lambda \\in (0,1)\\)</span>, by using minimization arguments and minimax estimates we prove the existence of a positive ground state solution. Moreover, we study the asymptotic behavior of these solutions when <span>\\(\\lambda \\rightarrow 0^{+}\\)</span>. This class of systems can model phenomena in nonlinear optics and in plasma physics.</p></div>","PeriodicalId":8265,"journal":{"name":"Annali di Matematica Pura ed Applicata","volume":null,"pages":null},"PeriodicalIF":1.0000,"publicationDate":"2023-12-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Existence and asymptotic behavior of ground states for linearly coupled systems involving exponential growth\",\"authors\":\"Uberlandio B. Severo, José Carlos de Albuquerque, Edjane O. dos Santos\",\"doi\":\"10.1007/s10231-023-01407-x\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>In this paper we study the following class of linearly coupled systems in the plane: </p><div><div><span>$$\\\\begin{aligned} {\\\\left\\\\{ \\\\begin{array}{ll} -\\\\Delta u + u = f_1(u) + \\\\lambda v,\\\\quad \\\\text{ in }\\\\quad \\\\mathbb {R}^2, \\\\\\\\ -\\\\Delta v + v = f_2(v) + \\\\lambda u,\\\\quad \\\\text{ in }\\\\quad \\\\mathbb {R}^2, \\\\\\\\ \\\\end{array}\\\\right. } \\\\end{aligned}$$</span></div></div><p>where <span>\\\\(f_{1}, f_{2}\\\\)</span> are continuous functions with critical exponential growth in the sense of Trudinger-Moser inequality and <span>\\\\(0<\\\\lambda <1\\\\)</span> is a parameter. First, for any <span>\\\\(\\\\lambda \\\\in (0,1)\\\\)</span>, by using minimization arguments and minimax estimates we prove the existence of a positive ground state solution. Moreover, we study the asymptotic behavior of these solutions when <span>\\\\(\\\\lambda \\\\rightarrow 0^{+}\\\\)</span>. This class of systems can model phenomena in nonlinear optics and in plasma physics.</p></div>\",\"PeriodicalId\":8265,\"journal\":{\"name\":\"Annali di Matematica Pura ed Applicata\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":1.0000,\"publicationDate\":\"2023-12-05\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Annali di Matematica Pura ed Applicata\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://link.springer.com/article/10.1007/s10231-023-01407-x\",\"RegionNum\":3,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"MATHEMATICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Annali di Matematica Pura ed Applicata","FirstCategoryId":"100","ListUrlMain":"https://link.springer.com/article/10.1007/s10231-023-01407-x","RegionNum":3,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 0
摘要
本文研究平面上的线性耦合系统:$$\begin{aligned} {\left\{ \begin{array}{ll} -\Delta u + u = f_1(u) + \lambda v,\quad \text{ in }\quad \mathbb {R}^2, \\ -\Delta v + v = f_2(v) + \lambda u,\quad \text{ in }\quad \mathbb {R}^2, \\ \end{array}\right. } \end{aligned}$$,其中\(f_{1}, f_{2}\)是具有Trudinger-Moser不等式意义上的临界指数增长的连续函数,\(0<\lambda <1\)是一个参数。首先,对于任意\(\lambda \in (0,1)\),通过最小化参数和极大极小估计证明了正基态解的存在性。此外,我们研究了这些解在\(\lambda \rightarrow 0^{+}\)时的渐近行为。这类系统可以模拟非线性光学和等离子体物理中的现象。
Existence and asymptotic behavior of ground states for linearly coupled systems involving exponential growth
In this paper we study the following class of linearly coupled systems in the plane:
$$\begin{aligned} {\left\{ \begin{array}{ll} -\Delta u + u = f_1(u) + \lambda v,\quad \text{ in }\quad \mathbb {R}^2, \\ -\Delta v + v = f_2(v) + \lambda u,\quad \text{ in }\quad \mathbb {R}^2, \\ \end{array}\right. } \end{aligned}$$
where \(f_{1}, f_{2}\) are continuous functions with critical exponential growth in the sense of Trudinger-Moser inequality and \(0<\lambda <1\) is a parameter. First, for any \(\lambda \in (0,1)\), by using minimization arguments and minimax estimates we prove the existence of a positive ground state solution. Moreover, we study the asymptotic behavior of these solutions when \(\lambda \rightarrow 0^{+}\). This class of systems can model phenomena in nonlinear optics and in plasma physics.
期刊介绍:
This journal, the oldest scientific periodical in Italy, was originally edited by Barnaba Tortolini and Francesco Brioschi and has appeared since 1850. Nowadays it is managed by a nonprofit organization, the Fondazione Annali di Matematica Pura ed Applicata, c.o. Dipartimento di Matematica "U. Dini", viale Morgagni 67A, 50134 Firenze, Italy, e-mail annali@math.unifi.it).
A board of Italian university professors governs the Fondazione and appoints the editors of the journal, whose responsibility it is to supervise the refereeing process. The names of governors and editors appear on the front page of each issue. Their addresses appear in the title pages of each issue.