{"title":"基于五模材料的水下定向声源","authors":"Binghao Zhao, Peng Wang, Dongwei Wang, Gengkai Hu","doi":"10.1007/s10338-023-00442-8","DOIUrl":null,"url":null,"abstract":"<div><p>An underwater directional acoustic emitter is conceived with a highly anisotropic lattice material, whose acoustic characteristics manifest strong dependence on the orientation of the lattice material’s principal axis. Exploiting these features, a cylindrical structure made of such anisotropic lattice material is engineered to possess distinct impedance values in different directions, thereby facilitating wave emission along the principal axis while inducing reflection in other directions. Notably, through numerical simulations, it is demonstrated that the emission direction can be effectively manipulated by adjusting the principal axis orientation, concurrently enhancing the emitted power. In contrast to previous directional acoustic structures, the compact emitter presented in this study can get rid of the size-wavelength constraint, enabling effective control of low-frequency waves.</p></div>","PeriodicalId":50892,"journal":{"name":"Acta Mechanica Solida Sinica","volume":"37 1","pages":"1 - 9"},"PeriodicalIF":2.0000,"publicationDate":"2023-11-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://link.springer.com/content/pdf/10.1007/s10338-023-00442-8.pdf","citationCount":"0","resultStr":"{\"title\":\"Underwater Directional Acoustic Source Based on Pentamode Material\",\"authors\":\"Binghao Zhao, Peng Wang, Dongwei Wang, Gengkai Hu\",\"doi\":\"10.1007/s10338-023-00442-8\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>An underwater directional acoustic emitter is conceived with a highly anisotropic lattice material, whose acoustic characteristics manifest strong dependence on the orientation of the lattice material’s principal axis. Exploiting these features, a cylindrical structure made of such anisotropic lattice material is engineered to possess distinct impedance values in different directions, thereby facilitating wave emission along the principal axis while inducing reflection in other directions. Notably, through numerical simulations, it is demonstrated that the emission direction can be effectively manipulated by adjusting the principal axis orientation, concurrently enhancing the emitted power. In contrast to previous directional acoustic structures, the compact emitter presented in this study can get rid of the size-wavelength constraint, enabling effective control of low-frequency waves.</p></div>\",\"PeriodicalId\":50892,\"journal\":{\"name\":\"Acta Mechanica Solida Sinica\",\"volume\":\"37 1\",\"pages\":\"1 - 9\"},\"PeriodicalIF\":2.0000,\"publicationDate\":\"2023-11-28\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://link.springer.com/content/pdf/10.1007/s10338-023-00442-8.pdf\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Acta Mechanica Solida Sinica\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://link.springer.com/article/10.1007/s10338-023-00442-8\",\"RegionNum\":3,\"RegionCategory\":\"工程技术\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"MATERIALS SCIENCE, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Acta Mechanica Solida Sinica","FirstCategoryId":"5","ListUrlMain":"https://link.springer.com/article/10.1007/s10338-023-00442-8","RegionNum":3,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"MATERIALS SCIENCE, MULTIDISCIPLINARY","Score":null,"Total":0}
Underwater Directional Acoustic Source Based on Pentamode Material
An underwater directional acoustic emitter is conceived with a highly anisotropic lattice material, whose acoustic characteristics manifest strong dependence on the orientation of the lattice material’s principal axis. Exploiting these features, a cylindrical structure made of such anisotropic lattice material is engineered to possess distinct impedance values in different directions, thereby facilitating wave emission along the principal axis while inducing reflection in other directions. Notably, through numerical simulations, it is demonstrated that the emission direction can be effectively manipulated by adjusting the principal axis orientation, concurrently enhancing the emitted power. In contrast to previous directional acoustic structures, the compact emitter presented in this study can get rid of the size-wavelength constraint, enabling effective control of low-frequency waves.
期刊介绍:
Acta Mechanica Solida Sinica aims to become the best journal of solid mechanics in China and a worldwide well-known one in the field of mechanics, by providing original, perspective and even breakthrough theories and methods for the research on solid mechanics.
The Journal is devoted to the publication of research papers in English in all fields of solid-state mechanics and its related disciplines in science, technology and engineering, with a balanced coverage on analytical, experimental, numerical and applied investigations. Articles, Short Communications, Discussions on previously published papers, and invitation-based Reviews are published bimonthly. The maximum length of an article is 30 pages, including equations, figures and tables