讨论了一维轴在a2上模的若干Betti数

IF 1 3区 数学 Q1 MATHEMATICS
Yao Yuan
{"title":"讨论了一维轴在a2上模的若干Betti数","authors":"Yao Yuan","doi":"10.1515/forum-2023-0111","DOIUrl":null,"url":null,"abstract":"Abstract Let M ⁢ ( d , χ ) {M(d,\\chi)} , with ( d , χ ) = 1 {(d,\\chi)=1} , be the moduli space of semistable sheaves on ℙ 2 {\\mathbb{P}^{2}} supported on curves of degree d and with Euler characteristic χ. The cohomology ring H * ⁢ ( M ⁢ ( d , χ ) , ℤ ) {H^{*}(M(d,\\chi),\\mathbb{Z})} of M ⁢ ( d , χ ) {M(d,\\chi)} is isomorphic to its Chow ring A * ⁢ ( M ⁢ ( d , χ ) ) {A^{*}(M(d,\\chi))} by Markman’s result. Pi and Shen have described a minimal generating set of A * ⁢ ( M ⁢ ( d , χ ) ) {A^{*}(M(d,\\chi))} consisting of 3 ⁢ d - 7 {3d-7} generators, which they also showed to have no relation in A ≤ d - 2 ⁢ ( M ⁢ ( d , χ ) ) {A^{\\leq d-2}(M(d,\\chi))} . We compute the two Betti numbers b 2 ⁢ ( d - 1 ) {b_{2(d-1)}} and b 2 ⁢ d {b_{2d}} of M ⁢ ( d , χ ) {M(d,\\chi)} , and as a corollary we show that the generators given by Pi and Shen have no relations in A ≤ d - 1 ⁢ ( M ⁢ ( d , χ ) ) {A^{\\leq d-1}(M(d,\\chi))} , but do have three linearly independent relations in A d ⁢ ( M ⁢ ( d , χ ) ) {A^{d}(M(d,\\chi))} .","PeriodicalId":12433,"journal":{"name":"Forum Mathematicum","volume":"40 5","pages":""},"PeriodicalIF":1.0000,"publicationDate":"2023-11-29","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Some Betti numbers of the moduli of 1-dimensional sheaves on ℙ2\",\"authors\":\"Yao Yuan\",\"doi\":\"10.1515/forum-2023-0111\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Abstract Let M ⁢ ( d , χ ) {M(d,\\\\chi)} , with ( d , χ ) = 1 {(d,\\\\chi)=1} , be the moduli space of semistable sheaves on ℙ 2 {\\\\mathbb{P}^{2}} supported on curves of degree d and with Euler characteristic χ. The cohomology ring H * ⁢ ( M ⁢ ( d , χ ) , ℤ ) {H^{*}(M(d,\\\\chi),\\\\mathbb{Z})} of M ⁢ ( d , χ ) {M(d,\\\\chi)} is isomorphic to its Chow ring A * ⁢ ( M ⁢ ( d , χ ) ) {A^{*}(M(d,\\\\chi))} by Markman’s result. Pi and Shen have described a minimal generating set of A * ⁢ ( M ⁢ ( d , χ ) ) {A^{*}(M(d,\\\\chi))} consisting of 3 ⁢ d - 7 {3d-7} generators, which they also showed to have no relation in A ≤ d - 2 ⁢ ( M ⁢ ( d , χ ) ) {A^{\\\\leq d-2}(M(d,\\\\chi))} . We compute the two Betti numbers b 2 ⁢ ( d - 1 ) {b_{2(d-1)}} and b 2 ⁢ d {b_{2d}} of M ⁢ ( d , χ ) {M(d,\\\\chi)} , and as a corollary we show that the generators given by Pi and Shen have no relations in A ≤ d - 1 ⁢ ( M ⁢ ( d , χ ) ) {A^{\\\\leq d-1}(M(d,\\\\chi))} , but do have three linearly independent relations in A d ⁢ ( M ⁢ ( d , χ ) ) {A^{d}(M(d,\\\\chi))} .\",\"PeriodicalId\":12433,\"journal\":{\"name\":\"Forum Mathematicum\",\"volume\":\"40 5\",\"pages\":\"\"},\"PeriodicalIF\":1.0000,\"publicationDate\":\"2023-11-29\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Forum Mathematicum\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://doi.org/10.1515/forum-2023-0111\",\"RegionNum\":3,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"MATHEMATICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Forum Mathematicum","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.1515/forum-2023-0111","RegionNum":3,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 0

摘要

设M ^ (d, χ) {M(d);\chi)} , (d, χ) = 1 {(d);\chi)=1} ,为a2上半稳定滑轮的模空间 {\mathbb{P}^{2}} 支持d次曲线,并具有欧拉特征χ。上同调环H * (M¹(d, χ), M) {h ^{*}(M(d);\chi),\mathbb{Z})} (M) (d, χ) {M(d);\chi)} 同构于它的周环A * (M) (d, χ)) {a ^{*}(M(d);\chi))} 马克曼的结果。Pi和Shen描述了a * (M) (d, χ))的最小生成集 {a ^{*}(M(d);\chi))} 由3∑d - 7组成 {3d-7} 在A≤d - 2减去(M减去(d, χ)) {a ^{\leq d-2}(M(d);\chi))} . 我们计算两个贝蒂数b2减去(d - 1) {b……{2(d-1)}} b2减去d {b……{2d}} (M) (d, χ) {M(d);\chi)} 作为推论,我们证明了由Pi和Shen给出的发生器在a≤d - 1 (M) (d, χ))中没有关系。 {a ^{\leq d-1}(M(d);\chi))} ,但在A d¹(M¹(d, χ))中确实有三个线性无关的关系 {a ^{d}(M(d);\chi))} .
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Some Betti numbers of the moduli of 1-dimensional sheaves on ℙ2
Abstract Let M ⁢ ( d , χ ) {M(d,\chi)} , with ( d , χ ) = 1 {(d,\chi)=1} , be the moduli space of semistable sheaves on ℙ 2 {\mathbb{P}^{2}} supported on curves of degree d and with Euler characteristic χ. The cohomology ring H * ⁢ ( M ⁢ ( d , χ ) , ℤ ) {H^{*}(M(d,\chi),\mathbb{Z})} of M ⁢ ( d , χ ) {M(d,\chi)} is isomorphic to its Chow ring A * ⁢ ( M ⁢ ( d , χ ) ) {A^{*}(M(d,\chi))} by Markman’s result. Pi and Shen have described a minimal generating set of A * ⁢ ( M ⁢ ( d , χ ) ) {A^{*}(M(d,\chi))} consisting of 3 ⁢ d - 7 {3d-7} generators, which they also showed to have no relation in A ≤ d - 2 ⁢ ( M ⁢ ( d , χ ) ) {A^{\leq d-2}(M(d,\chi))} . We compute the two Betti numbers b 2 ⁢ ( d - 1 ) {b_{2(d-1)}} and b 2 ⁢ d {b_{2d}} of M ⁢ ( d , χ ) {M(d,\chi)} , and as a corollary we show that the generators given by Pi and Shen have no relations in A ≤ d - 1 ⁢ ( M ⁢ ( d , χ ) ) {A^{\leq d-1}(M(d,\chi))} , but do have three linearly independent relations in A d ⁢ ( M ⁢ ( d , χ ) ) {A^{d}(M(d,\chi))} .
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Forum Mathematicum
Forum Mathematicum 数学-数学
CiteScore
1.60
自引率
0.00%
发文量
78
审稿时长
6-12 weeks
期刊介绍: Forum Mathematicum is a general mathematics journal, which is devoted to the publication of research articles in all fields of pure and applied mathematics, including mathematical physics. Forum Mathematicum belongs to the top 50 journals in pure and applied mathematics, as measured by citation impact.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信