{"title":"基于自动更新模型的燃气涡轮航空发动机推力变化抑制与加速性能提高控制","authors":"","doi":"10.1016/j.jppr.2023.02.008","DOIUrl":null,"url":null,"abstract":"<div><div>Model-based control shows promising potential for engine performance improvement and future aero-propulsion requirements. In this paper, an auto-updating thrust variation mitigation (AuTVM) control approach using on-board model strategies is proposed for gas turbine aero-engines under in-service degradation effects, which aims at active thrust regulation and acceleration protection in a simultaneous way. The AuTVM control is integrated with an on-line block, based on a reliable on-board engine model, and an off-line part for the periodical update of control parameters via post-flight engine monitoring data. The core feature of the AuTVM control is a set of auto-updating loops within the on-line part, including thrust regulation loop, surge margin loop, turbine entry temperature loop, and the steady loop, whose control parameters are periodically adjusted with increasing flight cycles. Meanwhile, an industrial sensor-based baseline controller and two tailored model-based controllers, i.e., a thrust variation mitigation (TVM) controller with fixed gains and a self-enhancing active transient protection (SeATP) controller with pro-active transient protection and passive thrust control, are also developed as comparison bases. Numerical simulations for idle to full-power acceleration tests are carried on a validated aero-thermal turbofan engine model using publicly available degradation data. Simulation results demonstrate that both new engines and severely degraded engines regulated by the AuTVM controller show significant thrust response enhancement, compared to the baseline controller. Moreover, thrust variation at the maximum steady state of degraded engines, which exists within the SeATP controller and the baseline controller, is suppressed by the proposed AuTVM controller. Robustness analysis against degradation uncertainties and sensor accuracy confirms that the AuTVM controller owns a closer maximum steady-state thrust distribution to the desired value than those of the SeATP and the baseline controller while utilizing transient margins of controlled engines more effectively. Hence, the control performance of the AuTVM controller for in-service engines is guaranteed.</div></div>","PeriodicalId":51341,"journal":{"name":"Propulsion and Power Research","volume":"13 3","pages":"Pages 394-415"},"PeriodicalIF":5.4000,"publicationDate":"2024-09-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Auto-updating model-based control for thrust variation mitigation and acceleration performance enhancement of gas turbine aero-engines\",\"authors\":\"\",\"doi\":\"10.1016/j.jppr.2023.02.008\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>Model-based control shows promising potential for engine performance improvement and future aero-propulsion requirements. In this paper, an auto-updating thrust variation mitigation (AuTVM) control approach using on-board model strategies is proposed for gas turbine aero-engines under in-service degradation effects, which aims at active thrust regulation and acceleration protection in a simultaneous way. The AuTVM control is integrated with an on-line block, based on a reliable on-board engine model, and an off-line part for the periodical update of control parameters via post-flight engine monitoring data. The core feature of the AuTVM control is a set of auto-updating loops within the on-line part, including thrust regulation loop, surge margin loop, turbine entry temperature loop, and the steady loop, whose control parameters are periodically adjusted with increasing flight cycles. Meanwhile, an industrial sensor-based baseline controller and two tailored model-based controllers, i.e., a thrust variation mitigation (TVM) controller with fixed gains and a self-enhancing active transient protection (SeATP) controller with pro-active transient protection and passive thrust control, are also developed as comparison bases. Numerical simulations for idle to full-power acceleration tests are carried on a validated aero-thermal turbofan engine model using publicly available degradation data. Simulation results demonstrate that both new engines and severely degraded engines regulated by the AuTVM controller show significant thrust response enhancement, compared to the baseline controller. Moreover, thrust variation at the maximum steady state of degraded engines, which exists within the SeATP controller and the baseline controller, is suppressed by the proposed AuTVM controller. Robustness analysis against degradation uncertainties and sensor accuracy confirms that the AuTVM controller owns a closer maximum steady-state thrust distribution to the desired value than those of the SeATP and the baseline controller while utilizing transient margins of controlled engines more effectively. Hence, the control performance of the AuTVM controller for in-service engines is guaranteed.</div></div>\",\"PeriodicalId\":51341,\"journal\":{\"name\":\"Propulsion and Power Research\",\"volume\":\"13 3\",\"pages\":\"Pages 394-415\"},\"PeriodicalIF\":5.4000,\"publicationDate\":\"2024-09-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Propulsion and Power Research\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S2212540X23000688\",\"RegionNum\":2,\"RegionCategory\":\"工程技术\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"ENGINEERING, AEROSPACE\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Propulsion and Power Research","FirstCategoryId":"5","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2212540X23000688","RegionNum":2,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ENGINEERING, AEROSPACE","Score":null,"Total":0}
Auto-updating model-based control for thrust variation mitigation and acceleration performance enhancement of gas turbine aero-engines
Model-based control shows promising potential for engine performance improvement and future aero-propulsion requirements. In this paper, an auto-updating thrust variation mitigation (AuTVM) control approach using on-board model strategies is proposed for gas turbine aero-engines under in-service degradation effects, which aims at active thrust regulation and acceleration protection in a simultaneous way. The AuTVM control is integrated with an on-line block, based on a reliable on-board engine model, and an off-line part for the periodical update of control parameters via post-flight engine monitoring data. The core feature of the AuTVM control is a set of auto-updating loops within the on-line part, including thrust regulation loop, surge margin loop, turbine entry temperature loop, and the steady loop, whose control parameters are periodically adjusted with increasing flight cycles. Meanwhile, an industrial sensor-based baseline controller and two tailored model-based controllers, i.e., a thrust variation mitigation (TVM) controller with fixed gains and a self-enhancing active transient protection (SeATP) controller with pro-active transient protection and passive thrust control, are also developed as comparison bases. Numerical simulations for idle to full-power acceleration tests are carried on a validated aero-thermal turbofan engine model using publicly available degradation data. Simulation results demonstrate that both new engines and severely degraded engines regulated by the AuTVM controller show significant thrust response enhancement, compared to the baseline controller. Moreover, thrust variation at the maximum steady state of degraded engines, which exists within the SeATP controller and the baseline controller, is suppressed by the proposed AuTVM controller. Robustness analysis against degradation uncertainties and sensor accuracy confirms that the AuTVM controller owns a closer maximum steady-state thrust distribution to the desired value than those of the SeATP and the baseline controller while utilizing transient margins of controlled engines more effectively. Hence, the control performance of the AuTVM controller for in-service engines is guaranteed.
期刊介绍:
Propulsion and Power Research is a peer reviewed scientific journal in English established in 2012. The Journals publishes high quality original research articles and general reviews in fundamental research aspects of aeronautics/astronautics propulsion and power engineering, including, but not limited to, system, fluid mechanics, heat transfer, combustion, vibration and acoustics, solid mechanics and dynamics, control and so on. The journal serves as a platform for academic exchange by experts, scholars and researchers in these fields.