Ruoyu Wang , Xianjun Yu , Baojie Liu , Guangfeng An
{"title":"双涵道发动机压缩系统部件匹配机理的新认识","authors":"Ruoyu Wang , Xianjun Yu , Baojie Liu , Guangfeng An","doi":"10.1016/j.jppr.2022.07.007","DOIUrl":null,"url":null,"abstract":"<div><p>Variable cycle engine (VCE) is one of the most promising technologies for the next-generation aircraft, the matching of different components in the compression system is a key difficulty VCE faced. To investigate the component matching mechanisms in the VCE compression system, an advanced throughflow program is employed to calculate the characteristic lines of each component, and a zero-dimensional method is developed to capture the component performance deviation during the coupling working process. By setting the compressor stall and choke conditions as the boundary, the operation range of the compression system is first clarified, and the aerodynamic performance in the operation zone is discussed, thus providing a theoretical basis for optimization of the engine operating control scheme. Results show that the efficiency of the core flow is optimum at the left-bottom corner of the operation region, while the total pressure ratio peaks at the right-top area, hence a balance is needed when deciding the matching point. Regulations of component control parameters will change the position of the operation zone, as well as the corresponding aerodynamic performance. Decreasing the core driven fan stage rotating speed can improve the total bypass ratio, yet the total pressure ratio of the core flow will be decreased. Closing the core driven fan stage inlet guide vane can increase the total bypass ratio without changing the core flow aerodynamic performance significantly. The bypass ratio of the compression system can also be increased by increasing the fan stall margin or decreasing its rotating speed, both ways will decrease the total pressure ratio of the core flow. Results of the study will benefit the variable cycle engine design process in operation point evaluation and thermodynamic cycle optimization.</p></div>","PeriodicalId":51341,"journal":{"name":"Propulsion and Power Research","volume":"13 1","pages":"Pages 118-131"},"PeriodicalIF":5.4000,"publicationDate":"2024-03-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.sciencedirect.com/science/article/pii/S2212540X23000706/pdfft?md5=cf67f8324e6d70f207b5f22f144e1366&pid=1-s2.0-S2212540X23000706-main.pdf","citationCount":"0","resultStr":"{\"title\":\"New insights into component matching mechanism in the compression system of double bypass engine\",\"authors\":\"Ruoyu Wang , Xianjun Yu , Baojie Liu , Guangfeng An\",\"doi\":\"10.1016/j.jppr.2022.07.007\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>Variable cycle engine (VCE) is one of the most promising technologies for the next-generation aircraft, the matching of different components in the compression system is a key difficulty VCE faced. To investigate the component matching mechanisms in the VCE compression system, an advanced throughflow program is employed to calculate the characteristic lines of each component, and a zero-dimensional method is developed to capture the component performance deviation during the coupling working process. By setting the compressor stall and choke conditions as the boundary, the operation range of the compression system is first clarified, and the aerodynamic performance in the operation zone is discussed, thus providing a theoretical basis for optimization of the engine operating control scheme. Results show that the efficiency of the core flow is optimum at the left-bottom corner of the operation region, while the total pressure ratio peaks at the right-top area, hence a balance is needed when deciding the matching point. Regulations of component control parameters will change the position of the operation zone, as well as the corresponding aerodynamic performance. Decreasing the core driven fan stage rotating speed can improve the total bypass ratio, yet the total pressure ratio of the core flow will be decreased. Closing the core driven fan stage inlet guide vane can increase the total bypass ratio without changing the core flow aerodynamic performance significantly. The bypass ratio of the compression system can also be increased by increasing the fan stall margin or decreasing its rotating speed, both ways will decrease the total pressure ratio of the core flow. Results of the study will benefit the variable cycle engine design process in operation point evaluation and thermodynamic cycle optimization.</p></div>\",\"PeriodicalId\":51341,\"journal\":{\"name\":\"Propulsion and Power Research\",\"volume\":\"13 1\",\"pages\":\"Pages 118-131\"},\"PeriodicalIF\":5.4000,\"publicationDate\":\"2024-03-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.sciencedirect.com/science/article/pii/S2212540X23000706/pdfft?md5=cf67f8324e6d70f207b5f22f144e1366&pid=1-s2.0-S2212540X23000706-main.pdf\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Propulsion and Power Research\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S2212540X23000706\",\"RegionNum\":2,\"RegionCategory\":\"工程技术\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"ENGINEERING, AEROSPACE\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Propulsion and Power Research","FirstCategoryId":"5","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2212540X23000706","RegionNum":2,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ENGINEERING, AEROSPACE","Score":null,"Total":0}
New insights into component matching mechanism in the compression system of double bypass engine
Variable cycle engine (VCE) is one of the most promising technologies for the next-generation aircraft, the matching of different components in the compression system is a key difficulty VCE faced. To investigate the component matching mechanisms in the VCE compression system, an advanced throughflow program is employed to calculate the characteristic lines of each component, and a zero-dimensional method is developed to capture the component performance deviation during the coupling working process. By setting the compressor stall and choke conditions as the boundary, the operation range of the compression system is first clarified, and the aerodynamic performance in the operation zone is discussed, thus providing a theoretical basis for optimization of the engine operating control scheme. Results show that the efficiency of the core flow is optimum at the left-bottom corner of the operation region, while the total pressure ratio peaks at the right-top area, hence a balance is needed when deciding the matching point. Regulations of component control parameters will change the position of the operation zone, as well as the corresponding aerodynamic performance. Decreasing the core driven fan stage rotating speed can improve the total bypass ratio, yet the total pressure ratio of the core flow will be decreased. Closing the core driven fan stage inlet guide vane can increase the total bypass ratio without changing the core flow aerodynamic performance significantly. The bypass ratio of the compression system can also be increased by increasing the fan stall margin or decreasing its rotating speed, both ways will decrease the total pressure ratio of the core flow. Results of the study will benefit the variable cycle engine design process in operation point evaluation and thermodynamic cycle optimization.
期刊介绍:
Propulsion and Power Research is a peer reviewed scientific journal in English established in 2012. The Journals publishes high quality original research articles and general reviews in fundamental research aspects of aeronautics/astronautics propulsion and power engineering, including, but not limited to, system, fluid mechanics, heat transfer, combustion, vibration and acoustics, solid mechanics and dynamics, control and so on. The journal serves as a platform for academic exchange by experts, scholars and researchers in these fields.