加权投影线例外序列上的辫群作用

Pub Date : 2023-11-23 DOI:10.1007/s10468-023-10243-9
Edson Ribeiro Alvares, Eduardo Nascimento Marcos, Hagen Meltzer
{"title":"加权投影线例外序列上的辫群作用","authors":"Edson Ribeiro Alvares,&nbsp;Eduardo Nascimento Marcos,&nbsp;Hagen Meltzer","doi":"10.1007/s10468-023-10243-9","DOIUrl":null,"url":null,"abstract":"<div><p>We give a new and intrinsic proof of the transitivity of the braid group action on the set of full exceptional sequences of coherent sheaves on a weighted projective line. We do not use the corresponding result of Crawley-Boevey for modules over hereditary algebras. As an application we prove that the strongest global dimension of the category of coherent sheaves on a weighted projective line <span>\\(\\mathbb {X}\\)</span> does not depend on the parameters of <span>\\(\\mathbb {X}\\)</span>. Finally we prove that the determinant of the matrix obtained by taking the values of <i>n</i> <span>\\(\\mathbb {Z}\\)</span>-linear functions defined on the Grothendieck group <span>\\(\\textrm{K}_0(\\mathbb {X}) \\simeq \\mathbb {Z}^n \\)</span> of the elements of a full exceptional sequence is an invariant, up to sign.</p></div>","PeriodicalId":0,"journal":{"name":"","volume":null,"pages":null},"PeriodicalIF":0.0,"publicationDate":"2023-11-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"On the Braid Group Action on Exceptional Sequences for Weighted Projective Lines\",\"authors\":\"Edson Ribeiro Alvares,&nbsp;Eduardo Nascimento Marcos,&nbsp;Hagen Meltzer\",\"doi\":\"10.1007/s10468-023-10243-9\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>We give a new and intrinsic proof of the transitivity of the braid group action on the set of full exceptional sequences of coherent sheaves on a weighted projective line. We do not use the corresponding result of Crawley-Boevey for modules over hereditary algebras. As an application we prove that the strongest global dimension of the category of coherent sheaves on a weighted projective line <span>\\\\(\\\\mathbb {X}\\\\)</span> does not depend on the parameters of <span>\\\\(\\\\mathbb {X}\\\\)</span>. Finally we prove that the determinant of the matrix obtained by taking the values of <i>n</i> <span>\\\\(\\\\mathbb {Z}\\\\)</span>-linear functions defined on the Grothendieck group <span>\\\\(\\\\textrm{K}_0(\\\\mathbb {X}) \\\\simeq \\\\mathbb {Z}^n \\\\)</span> of the elements of a full exceptional sequence is an invariant, up to sign.</p></div>\",\"PeriodicalId\":0,\"journal\":{\"name\":\"\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":0.0,\"publicationDate\":\"2023-11-23\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://link.springer.com/article/10.1007/s10468-023-10243-9\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"","FirstCategoryId":"100","ListUrlMain":"https://link.springer.com/article/10.1007/s10468-023-10243-9","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

给出了加权投影线上相干束的满例外序列集上辫群作用可传递性的一个新的内在证明。对于遗传代数上的模,我们没有使用Crawley-Boevey的相应结果。作为一个应用,我们证明了在加权投影线\(\mathbb {X}\)上相干轴类的最强整体维数不依赖于\(\mathbb {X}\)的参数。最后证明了在一个满例外序列的元素的Grothendieck群\(\textrm{K}_0(\mathbb {X}) \simeq \mathbb {Z}^n \)上定义的n个\(\mathbb {Z}\) -线性函数的值所得到的矩阵的行列式是不变的,直到符号。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
分享
查看原文
On the Braid Group Action on Exceptional Sequences for Weighted Projective Lines

We give a new and intrinsic proof of the transitivity of the braid group action on the set of full exceptional sequences of coherent sheaves on a weighted projective line. We do not use the corresponding result of Crawley-Boevey for modules over hereditary algebras. As an application we prove that the strongest global dimension of the category of coherent sheaves on a weighted projective line \(\mathbb {X}\) does not depend on the parameters of \(\mathbb {X}\). Finally we prove that the determinant of the matrix obtained by taking the values of n \(\mathbb {Z}\)-linear functions defined on the Grothendieck group \(\textrm{K}_0(\mathbb {X}) \simeq \mathbb {Z}^n \) of the elements of a full exceptional sequence is an invariant, up to sign.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信