分级Kronecker模ar序列的中项

IF 0.5 4区 数学 Q3 MATHEMATICS
Jie Liu
{"title":"分级Kronecker模ar序列的中项","authors":"Jie Liu","doi":"10.1007/s10468-023-10241-x","DOIUrl":null,"url":null,"abstract":"<div><p>Let <span>\\((T(n),\\Omega )\\)</span> be the covering of the generalized Kronecker quiver <i>K</i>(<i>n</i>), where <span>\\(\\Omega \\)</span> is a bipartite orientation. Then there exists a reflection functor <span>\\(\\sigma \\)</span> on the category <span>\\({{\\,\\textrm{mod}\\,}}(T(n),\\Omega )\\)</span>. Suppose that <span>\\(0\\rightarrow X\\rightarrow Y\\rightarrow Z\\rightarrow 0\\)</span> is an AR-sequence in the regular component <span>\\(\\mathcal {D}\\)</span> of <span>\\({{\\,\\textrm{mod}\\,}}(T(n),\\Omega )\\)</span>, and <i>b</i>(<i>Z</i>) is the number of flow modules in the <span>\\(\\sigma \\)</span>-orbit of <i>Z</i>. Then the middle term <i>Y</i> is a sink (source or flow) module if and only if <span>\\(\\sigma Z\\)</span> is a sink (source or flow) module. Moreover, their radii and centers satisfy <span>\\(r(Y)=r(\\sigma Z)+1\\)</span> and <span>\\(C(Y)=C(\\sigma Z)\\)</span>.</p></div>","PeriodicalId":50825,"journal":{"name":"Algebras and Representation Theory","volume":"27 1","pages":"911 - 926"},"PeriodicalIF":0.5000,"publicationDate":"2023-11-29","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://link.springer.com/content/pdf/10.1007/s10468-023-10241-x.pdf","citationCount":"0","resultStr":"{\"title\":\"Middle Terms of AR-sequences of Graded Kronecker Modules\",\"authors\":\"Jie Liu\",\"doi\":\"10.1007/s10468-023-10241-x\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>Let <span>\\\\((T(n),\\\\Omega )\\\\)</span> be the covering of the generalized Kronecker quiver <i>K</i>(<i>n</i>), where <span>\\\\(\\\\Omega \\\\)</span> is a bipartite orientation. Then there exists a reflection functor <span>\\\\(\\\\sigma \\\\)</span> on the category <span>\\\\({{\\\\,\\\\textrm{mod}\\\\,}}(T(n),\\\\Omega )\\\\)</span>. Suppose that <span>\\\\(0\\\\rightarrow X\\\\rightarrow Y\\\\rightarrow Z\\\\rightarrow 0\\\\)</span> is an AR-sequence in the regular component <span>\\\\(\\\\mathcal {D}\\\\)</span> of <span>\\\\({{\\\\,\\\\textrm{mod}\\\\,}}(T(n),\\\\Omega )\\\\)</span>, and <i>b</i>(<i>Z</i>) is the number of flow modules in the <span>\\\\(\\\\sigma \\\\)</span>-orbit of <i>Z</i>. Then the middle term <i>Y</i> is a sink (source or flow) module if and only if <span>\\\\(\\\\sigma Z\\\\)</span> is a sink (source or flow) module. Moreover, their radii and centers satisfy <span>\\\\(r(Y)=r(\\\\sigma Z)+1\\\\)</span> and <span>\\\\(C(Y)=C(\\\\sigma Z)\\\\)</span>.</p></div>\",\"PeriodicalId\":50825,\"journal\":{\"name\":\"Algebras and Representation Theory\",\"volume\":\"27 1\",\"pages\":\"911 - 926\"},\"PeriodicalIF\":0.5000,\"publicationDate\":\"2023-11-29\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://link.springer.com/content/pdf/10.1007/s10468-023-10241-x.pdf\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Algebras and Representation Theory\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://link.springer.com/article/10.1007/s10468-023-10241-x\",\"RegionNum\":4,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"MATHEMATICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Algebras and Representation Theory","FirstCategoryId":"100","ListUrlMain":"https://link.springer.com/article/10.1007/s10468-023-10241-x","RegionNum":4,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 0

摘要

设\((T(n),\Omega )\)为广义Kronecker颤振K(n)的覆盖,其中\(\Omega \)为二部取向。那么在类别\({{\,\textrm{mod}\,}}(T(n),\Omega )\)上存在一个反射函子\(\sigma \)。设\(0\rightarrow X\rightarrow Y\rightarrow Z\rightarrow 0\)为\({{\,\textrm{mod}\,}}(T(n),\Omega )\)正则分量\(\mathcal {D}\)中的ar序列,b(Z)为Z的\(\sigma \) -轨道上的流模块数,则当且仅当\(\sigma Z\)为汇(源或流)模块时,中间项Y为汇(源或流)模块。它们的半径和中心满足\(r(Y)=r(\sigma Z)+1\)和\(C(Y)=C(\sigma Z)\)。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Middle Terms of AR-sequences of Graded Kronecker Modules

Let \((T(n),\Omega )\) be the covering of the generalized Kronecker quiver K(n), where \(\Omega \) is a bipartite orientation. Then there exists a reflection functor \(\sigma \) on the category \({{\,\textrm{mod}\,}}(T(n),\Omega )\). Suppose that \(0\rightarrow X\rightarrow Y\rightarrow Z\rightarrow 0\) is an AR-sequence in the regular component \(\mathcal {D}\) of \({{\,\textrm{mod}\,}}(T(n),\Omega )\), and b(Z) is the number of flow modules in the \(\sigma \)-orbit of Z. Then the middle term Y is a sink (source or flow) module if and only if \(\sigma Z\) is a sink (source or flow) module. Moreover, their radii and centers satisfy \(r(Y)=r(\sigma Z)+1\) and \(C(Y)=C(\sigma Z)\).

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
1.30
自引率
0.00%
发文量
61
审稿时长
6-12 weeks
期刊介绍: Algebras and Representation Theory features carefully refereed papers relating, in its broadest sense, to the structure and representation theory of algebras, including Lie algebras and superalgebras, rings of differential operators, group rings and algebras, C*-algebras and Hopf algebras, with particular emphasis on quantum groups. The journal contains high level, significant and original research papers, as well as expository survey papers written by specialists who present the state-of-the-art of well-defined subjects or subdomains. Occasionally, special issues on specific subjects are published as well, the latter allowing specialists and non-specialists to quickly get acquainted with new developments and topics within the field of rings, algebras and their applications.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信