实现最佳运输的最佳运行时间

IF 0.8 4区 管理学 Q4 OPERATIONS RESEARCH & MANAGEMENT SCIENCE
Jose Blanchet, Arun Jambulapati, Carson Kent, Aaron Sidford
{"title":"实现最佳运输的最佳运行时间","authors":"Jose Blanchet,&nbsp;Arun Jambulapati,&nbsp;Carson Kent,&nbsp;Aaron Sidford","doi":"10.1016/j.orl.2023.11.007","DOIUrl":null,"url":null,"abstract":"<div><p><span>We provide faster algorithms for approximating the optimal transport distance, e.g. earth mover's distance, between two discrete probability distributions on </span><em>n</em> elements. We present two algorithms which compute couplings between marginal distributions with an expected transportation cost that is within an additive <em>ϵ</em> of optimal in time <span><math><mover><mrow><mi>O</mi></mrow><mrow><mo>˜</mo></mrow></mover><mo>(</mo><msup><mrow><mi>n</mi></mrow><mrow><mn>2</mn></mrow></msup><mo>/</mo><mi>ϵ</mi><mo>)</mo></math></span>; one algorithm is straightforward to parallelize and implementable in depth <span><math><mover><mrow><mi>O</mi></mrow><mrow><mo>˜</mo></mrow></mover><mo>(</mo><mn>1</mn><mo>/</mo><mi>ϵ</mi><mo>)</mo></math></span>. Further, we show that additional improvements on our results must be coupled with breakthroughs in algorithmic graph theory.</p></div>","PeriodicalId":54682,"journal":{"name":"Operations Research Letters","volume":null,"pages":null},"PeriodicalIF":0.8000,"publicationDate":"2023-11-24","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"66","resultStr":"{\"title\":\"Towards optimal running timesfor optimal transport\",\"authors\":\"Jose Blanchet,&nbsp;Arun Jambulapati,&nbsp;Carson Kent,&nbsp;Aaron Sidford\",\"doi\":\"10.1016/j.orl.2023.11.007\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p><span>We provide faster algorithms for approximating the optimal transport distance, e.g. earth mover's distance, between two discrete probability distributions on </span><em>n</em> elements. We present two algorithms which compute couplings between marginal distributions with an expected transportation cost that is within an additive <em>ϵ</em> of optimal in time <span><math><mover><mrow><mi>O</mi></mrow><mrow><mo>˜</mo></mrow></mover><mo>(</mo><msup><mrow><mi>n</mi></mrow><mrow><mn>2</mn></mrow></msup><mo>/</mo><mi>ϵ</mi><mo>)</mo></math></span>; one algorithm is straightforward to parallelize and implementable in depth <span><math><mover><mrow><mi>O</mi></mrow><mrow><mo>˜</mo></mrow></mover><mo>(</mo><mn>1</mn><mo>/</mo><mi>ϵ</mi><mo>)</mo></math></span>. Further, we show that additional improvements on our results must be coupled with breakthroughs in algorithmic graph theory.</p></div>\",\"PeriodicalId\":54682,\"journal\":{\"name\":\"Operations Research Letters\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":0.8000,\"publicationDate\":\"2023-11-24\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"66\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Operations Research Letters\",\"FirstCategoryId\":\"91\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S0167637723001852\",\"RegionNum\":4,\"RegionCategory\":\"管理学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q4\",\"JCRName\":\"OPERATIONS RESEARCH & MANAGEMENT SCIENCE\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Operations Research Letters","FirstCategoryId":"91","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0167637723001852","RegionNum":4,"RegionCategory":"管理学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"OPERATIONS RESEARCH & MANAGEMENT SCIENCE","Score":null,"Total":0}
引用次数: 66

摘要

我们提供了在n个元素上的两个离散概率分布之间近似最佳传输距离的更快算法,例如土方移动器的距离。我们提出了两种算法,它们计算边际分布之间的耦合,期望运输成本在时间O ~ (n2/ λ)的最优加性λ内;一种算法可以直接并行化,并且可以在深度O ~ (1/ λ)上实现。此外,我们表明,我们的结果的额外改进必须与算法图论的突破相结合。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Towards optimal running timesfor optimal transport

We provide faster algorithms for approximating the optimal transport distance, e.g. earth mover's distance, between two discrete probability distributions on n elements. We present two algorithms which compute couplings between marginal distributions with an expected transportation cost that is within an additive ϵ of optimal in time O˜(n2/ϵ); one algorithm is straightforward to parallelize and implementable in depth O˜(1/ϵ). Further, we show that additional improvements on our results must be coupled with breakthroughs in algorithmic graph theory.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Operations Research Letters
Operations Research Letters 管理科学-运筹学与管理科学
CiteScore
2.10
自引率
9.10%
发文量
111
审稿时长
83 days
期刊介绍: Operations Research Letters is committed to the rapid review and fast publication of short articles on all aspects of operations research and analytics. Apart from a limitation to eight journal pages, quality, originality, relevance and clarity are the only criteria for selecting the papers to be published. ORL covers the broad field of optimization, stochastic models and game theory. Specific areas of interest include networks, routing, location, queueing, scheduling, inventory, reliability, and financial engineering. We wish to explore interfaces with other fields such as life sciences and health care, artificial intelligence and machine learning, energy distribution, and computational social sciences and humanities. Our traditional strength is in methodology, including theory, modelling, algorithms and computational studies. We also welcome novel applications and concise literature reviews.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信