Kanvaly Fadiga, Etienne Houzé, Ada Diaconescu, Jean-Louis Dessalles
{"title":"利用聚合和干预提高因果学习的可扩展性和性能","authors":"Kanvaly Fadiga, Etienne Houzé, Ada Diaconescu, Jean-Louis Dessalles","doi":"https://dl.acm.org/doi/10.1145/3607872","DOIUrl":null,"url":null,"abstract":"<p>Smart homes are Cyber-Physical Systems (CPS) where multiple devices and controllers cooperate to achieve high-level goals. Causal knowledge on relations between system entities is essential for enabling system self-adaption to dynamic changes. As house configurations are diverse, this knowledge is difficult to obtain. In previous work, we proposed to generate Causal Bayesian Networks (CBN) as follows. Starting with considering all possible relations, we progressively discarded non-correlated variables. Next, we identified causal relations from the remaining correlations by employing “<i>do-operations</i>”. The obtained CBN could then be employed for causal inference. The main challenges of this approach included: “non-doable variables” and limited scalability. To address these issues, we propose three extensions: i) early pruning weakly correlated relations to reduce the number of required do-operations; ii) introducing aggregate variables that summarize relations between weakly-coupled sub-systems; iii) applying the method a second time to perform <i>indirect do</i> interventions and handle non-doable relations. We illustrate and evaluate the efficiency of these contributions via examples from the smart home and power grid domain. Our proposal leads to a decrease in the number of operations required to learn the CBN and in an increased accuracy of the learned CBN, paving the way towards applications in large CPS.</p>","PeriodicalId":50919,"journal":{"name":"ACM Transactions on Autonomous and Adaptive Systems","volume":"47 1","pages":""},"PeriodicalIF":2.2000,"publicationDate":"2023-07-25","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Improving Causal Learning Scalability and Performance using Aggregates and Interventions\",\"authors\":\"Kanvaly Fadiga, Etienne Houzé, Ada Diaconescu, Jean-Louis Dessalles\",\"doi\":\"https://dl.acm.org/doi/10.1145/3607872\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>Smart homes are Cyber-Physical Systems (CPS) where multiple devices and controllers cooperate to achieve high-level goals. Causal knowledge on relations between system entities is essential for enabling system self-adaption to dynamic changes. As house configurations are diverse, this knowledge is difficult to obtain. In previous work, we proposed to generate Causal Bayesian Networks (CBN) as follows. Starting with considering all possible relations, we progressively discarded non-correlated variables. Next, we identified causal relations from the remaining correlations by employing “<i>do-operations</i>”. The obtained CBN could then be employed for causal inference. The main challenges of this approach included: “non-doable variables” and limited scalability. To address these issues, we propose three extensions: i) early pruning weakly correlated relations to reduce the number of required do-operations; ii) introducing aggregate variables that summarize relations between weakly-coupled sub-systems; iii) applying the method a second time to perform <i>indirect do</i> interventions and handle non-doable relations. We illustrate and evaluate the efficiency of these contributions via examples from the smart home and power grid domain. Our proposal leads to a decrease in the number of operations required to learn the CBN and in an increased accuracy of the learned CBN, paving the way towards applications in large CPS.</p>\",\"PeriodicalId\":50919,\"journal\":{\"name\":\"ACM Transactions on Autonomous and Adaptive Systems\",\"volume\":\"47 1\",\"pages\":\"\"},\"PeriodicalIF\":2.2000,\"publicationDate\":\"2023-07-25\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"ACM Transactions on Autonomous and Adaptive Systems\",\"FirstCategoryId\":\"94\",\"ListUrlMain\":\"https://doi.org/https://dl.acm.org/doi/10.1145/3607872\",\"RegionNum\":4,\"RegionCategory\":\"计算机科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"COMPUTER SCIENCE, ARTIFICIAL INTELLIGENCE\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"ACM Transactions on Autonomous and Adaptive Systems","FirstCategoryId":"94","ListUrlMain":"https://doi.org/https://dl.acm.org/doi/10.1145/3607872","RegionNum":4,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"COMPUTER SCIENCE, ARTIFICIAL INTELLIGENCE","Score":null,"Total":0}
Improving Causal Learning Scalability and Performance using Aggregates and Interventions
Smart homes are Cyber-Physical Systems (CPS) where multiple devices and controllers cooperate to achieve high-level goals. Causal knowledge on relations between system entities is essential for enabling system self-adaption to dynamic changes. As house configurations are diverse, this knowledge is difficult to obtain. In previous work, we proposed to generate Causal Bayesian Networks (CBN) as follows. Starting with considering all possible relations, we progressively discarded non-correlated variables. Next, we identified causal relations from the remaining correlations by employing “do-operations”. The obtained CBN could then be employed for causal inference. The main challenges of this approach included: “non-doable variables” and limited scalability. To address these issues, we propose three extensions: i) early pruning weakly correlated relations to reduce the number of required do-operations; ii) introducing aggregate variables that summarize relations between weakly-coupled sub-systems; iii) applying the method a second time to perform indirect do interventions and handle non-doable relations. We illustrate and evaluate the efficiency of these contributions via examples from the smart home and power grid domain. Our proposal leads to a decrease in the number of operations required to learn the CBN and in an increased accuracy of the learned CBN, paving the way towards applications in large CPS.
期刊介绍:
TAAS addresses research on autonomous and adaptive systems being undertaken by an increasingly interdisciplinary research community -- and provides a common platform under which this work can be published and disseminated. TAAS encourages contributions aimed at supporting the understanding, development, and control of such systems and of their behaviors.
TAAS addresses research on autonomous and adaptive systems being undertaken by an increasingly interdisciplinary research community - and provides a common platform under which this work can be published and disseminated. TAAS encourages contributions aimed at supporting the understanding, development, and control of such systems and of their behaviors. Contributions are expected to be based on sound and innovative theoretical models, algorithms, engineering and programming techniques, infrastructures and systems, or technological and application experiences.