{"title":"基于流的非合作航天器6D姿态跟踪","authors":"Yu Su, Zexu Zhang, Mengmeng Yuan, Yishi Wang","doi":"10.1155/2023/9631895","DOIUrl":null,"url":null,"abstract":"In this work, an optical-flow-based pose tracking method with long short-term memory for known uncooperative spacecraft is proposed. In combination with the segmentation network, we constrain the optical flow area of the target to cope with harsh lighting conditions and highly textured background. With the introduction of long short-term memory structure, the proposed method can maintain a robust and accurate tracking performance even in a long-term sequence of images. In our experiments, the pose tracking effects in the synthetic images as well as the SwissCube dataset images are tested, respectively. By comparing with the state-of-the-art pose tracking frameworks, we demonstrate the performance of our method and in particular the improvements under complex environments.","PeriodicalId":13748,"journal":{"name":"International Journal of Aerospace Engineering","volume":"120 1","pages":""},"PeriodicalIF":1.1000,"publicationDate":"2023-11-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Flow-Based 6D Pose Tracking of Uncooperative Spacecrafts\",\"authors\":\"Yu Su, Zexu Zhang, Mengmeng Yuan, Yishi Wang\",\"doi\":\"10.1155/2023/9631895\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"In this work, an optical-flow-based pose tracking method with long short-term memory for known uncooperative spacecraft is proposed. In combination with the segmentation network, we constrain the optical flow area of the target to cope with harsh lighting conditions and highly textured background. With the introduction of long short-term memory structure, the proposed method can maintain a robust and accurate tracking performance even in a long-term sequence of images. In our experiments, the pose tracking effects in the synthetic images as well as the SwissCube dataset images are tested, respectively. By comparing with the state-of-the-art pose tracking frameworks, we demonstrate the performance of our method and in particular the improvements under complex environments.\",\"PeriodicalId\":13748,\"journal\":{\"name\":\"International Journal of Aerospace Engineering\",\"volume\":\"120 1\",\"pages\":\"\"},\"PeriodicalIF\":1.1000,\"publicationDate\":\"2023-11-22\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"International Journal of Aerospace Engineering\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://doi.org/10.1155/2023/9631895\",\"RegionNum\":4,\"RegionCategory\":\"工程技术\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"ENGINEERING, AEROSPACE\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"International Journal of Aerospace Engineering","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.1155/2023/9631895","RegionNum":4,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"ENGINEERING, AEROSPACE","Score":null,"Total":0}
Flow-Based 6D Pose Tracking of Uncooperative Spacecrafts
In this work, an optical-flow-based pose tracking method with long short-term memory for known uncooperative spacecraft is proposed. In combination with the segmentation network, we constrain the optical flow area of the target to cope with harsh lighting conditions and highly textured background. With the introduction of long short-term memory structure, the proposed method can maintain a robust and accurate tracking performance even in a long-term sequence of images. In our experiments, the pose tracking effects in the synthetic images as well as the SwissCube dataset images are tested, respectively. By comparing with the state-of-the-art pose tracking frameworks, we demonstrate the performance of our method and in particular the improvements under complex environments.
期刊介绍:
International Journal of Aerospace Engineering aims to serve the international aerospace engineering community through dissemination of scientific knowledge on practical engineering and design methodologies pertaining to aircraft and space vehicles.
Original unpublished manuscripts are solicited on all areas of aerospace engineering including but not limited to:
-Mechanics of materials and structures-
Aerodynamics and fluid mechanics-
Dynamics and control-
Aeroacoustics-
Aeroelasticity-
Propulsion and combustion-
Avionics and systems-
Flight simulation and mechanics-
Unmanned air vehicles (UAVs).
Review articles on any of the above topics are also welcome.