寻找长时间微弱的天文高能瞬变:数据驱动的方法

IF 2.7 3区 物理与天体物理 Q2 ASTRONOMY & ASTROPHYSICS
Riccardo Crupi, Giuseppe Dilillo, Elisabetta Bissaldi, Kester Ward, Fabrizio Fiore, Andrea Vacchi
{"title":"寻找长时间微弱的天文高能瞬变:数据驱动的方法","authors":"Riccardo Crupi,&nbsp;Giuseppe Dilillo,&nbsp;Elisabetta Bissaldi,&nbsp;Kester Ward,&nbsp;Fabrizio Fiore,&nbsp;Andrea Vacchi","doi":"10.1007/s10686-023-09915-7","DOIUrl":null,"url":null,"abstract":"<div><p>HERMES Pathfinder is an in-orbit demonstration consisting of a constellation of six 3U nano-satellites hosting simple but innovative detectors for the monitoring of cosmic high-energy transients. The main objective of HERMES Pathfinder is to prove that accurate position of high-energy cosmic transients can be obtained using miniaturized hardware. The transient position is obtained by studying the delay time of arrival of the signal to different detectors hosted by nano-satellites on low-Earth orbits. In this context, we need to develop novel tools to fully exploit the future scientific data output of HERMES Pathfinder. In this paper, we introduce a new framework to assess the background count rate of a spaceborne, high energy detector; a key step towards the identification of faint astrophysical transients. We employ a neural network to estimate the background lightcurves on different timescales. Subsequently, we employ a fast change-point and anomaly detection technique called Poisson-FOCuS to identify observation segments where statistically significant excesses in the observed count rate relative to the background estimate exist. We test the new software on archival data from the NASA Fermi Gamma-ray Burst Monitor (GBM), which has a collecting area and background level of the same order of magnitude to those of HERMES Pathfinder. The neural network performances are discussed and analyzed over period of both high and low solar activity. We were able to confirm events in the Fermi-GBM catalog, both solar flares and gamma-ray bursts, and found events, not present in Fermi-GBM database, that could be attributed to solar flares, terrestrial gamma-ray flashes, gamma-ray bursts and galactic X-ray flashes. Seven of these are selected and further analyzed, providing an estimate of localisation and a tentative classification.</p></div>","PeriodicalId":551,"journal":{"name":"Experimental Astronomy","volume":"56 2-3","pages":"421 - 476"},"PeriodicalIF":2.7000,"publicationDate":"2023-11-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://link.springer.com/content/pdf/10.1007/s10686-023-09915-7.pdf","citationCount":"0","resultStr":"{\"title\":\"Searching for long faint astronomical high energy transients: a data driven approach\",\"authors\":\"Riccardo Crupi,&nbsp;Giuseppe Dilillo,&nbsp;Elisabetta Bissaldi,&nbsp;Kester Ward,&nbsp;Fabrizio Fiore,&nbsp;Andrea Vacchi\",\"doi\":\"10.1007/s10686-023-09915-7\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>HERMES Pathfinder is an in-orbit demonstration consisting of a constellation of six 3U nano-satellites hosting simple but innovative detectors for the monitoring of cosmic high-energy transients. The main objective of HERMES Pathfinder is to prove that accurate position of high-energy cosmic transients can be obtained using miniaturized hardware. The transient position is obtained by studying the delay time of arrival of the signal to different detectors hosted by nano-satellites on low-Earth orbits. In this context, we need to develop novel tools to fully exploit the future scientific data output of HERMES Pathfinder. In this paper, we introduce a new framework to assess the background count rate of a spaceborne, high energy detector; a key step towards the identification of faint astrophysical transients. We employ a neural network to estimate the background lightcurves on different timescales. Subsequently, we employ a fast change-point and anomaly detection technique called Poisson-FOCuS to identify observation segments where statistically significant excesses in the observed count rate relative to the background estimate exist. We test the new software on archival data from the NASA Fermi Gamma-ray Burst Monitor (GBM), which has a collecting area and background level of the same order of magnitude to those of HERMES Pathfinder. The neural network performances are discussed and analyzed over period of both high and low solar activity. We were able to confirm events in the Fermi-GBM catalog, both solar flares and gamma-ray bursts, and found events, not present in Fermi-GBM database, that could be attributed to solar flares, terrestrial gamma-ray flashes, gamma-ray bursts and galactic X-ray flashes. Seven of these are selected and further analyzed, providing an estimate of localisation and a tentative classification.</p></div>\",\"PeriodicalId\":551,\"journal\":{\"name\":\"Experimental Astronomy\",\"volume\":\"56 2-3\",\"pages\":\"421 - 476\"},\"PeriodicalIF\":2.7000,\"publicationDate\":\"2023-11-22\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://link.springer.com/content/pdf/10.1007/s10686-023-09915-7.pdf\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Experimental Astronomy\",\"FirstCategoryId\":\"101\",\"ListUrlMain\":\"https://link.springer.com/article/10.1007/s10686-023-09915-7\",\"RegionNum\":3,\"RegionCategory\":\"物理与天体物理\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"ASTRONOMY & ASTROPHYSICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Experimental Astronomy","FirstCategoryId":"101","ListUrlMain":"https://link.springer.com/article/10.1007/s10686-023-09915-7","RegionNum":3,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"ASTRONOMY & ASTROPHYSICS","Score":null,"Total":0}
引用次数: 0

摘要

HERMES Pathfinder是一个在轨演示,由6颗3U纳米卫星组成,这些卫星承载着简单但创新的探测器,用于监测宇宙高能瞬变。HERMES探路者的主要目标是证明使用小型化硬件可以获得高能宇宙瞬变的精确位置。通过研究信号到达低地球轨道纳米卫星不同探测器的延迟时间,得到了瞬态位置。在此背景下,我们需要开发新的工具来充分利用HERMES探路者未来的科学数据输出。本文提出了一种评估星载高能探测器背景计数率的新框架;这是识别微弱天体物理瞬变的关键一步。我们使用神经网络来估计不同时间尺度上的背景光曲线。随后,我们采用一种称为泊松焦点的快速变化点和异常检测技术来识别观测到的计数率相对于背景估计存在统计上显著过剩的观测段。我们在美国宇航局费米伽马射线暴监测仪(GBM)的档案数据上测试了新软件,它的收集面积和背景水平与赫尔墨斯探路者的相同数量级。讨论和分析了神经网络在太阳活动高峰和低谷时期的性能。我们能够确认Fermi-GBM目录中的事件,太阳耀斑和伽马射线暴,并发现Fermi-GBM数据库中没有的事件,可以归因于太阳耀斑,地球伽马射线闪光,伽马射线暴和银河系x射线闪光。选择其中的七个并进一步分析,提供本地化的估计和初步分类。
本文章由计算机程序翻译,如有差异,请以英文原文为准。

Searching for long faint astronomical high energy transients: a data driven approach

Searching for long faint astronomical high energy transients: a data driven approach

HERMES Pathfinder is an in-orbit demonstration consisting of a constellation of six 3U nano-satellites hosting simple but innovative detectors for the monitoring of cosmic high-energy transients. The main objective of HERMES Pathfinder is to prove that accurate position of high-energy cosmic transients can be obtained using miniaturized hardware. The transient position is obtained by studying the delay time of arrival of the signal to different detectors hosted by nano-satellites on low-Earth orbits. In this context, we need to develop novel tools to fully exploit the future scientific data output of HERMES Pathfinder. In this paper, we introduce a new framework to assess the background count rate of a spaceborne, high energy detector; a key step towards the identification of faint astrophysical transients. We employ a neural network to estimate the background lightcurves on different timescales. Subsequently, we employ a fast change-point and anomaly detection technique called Poisson-FOCuS to identify observation segments where statistically significant excesses in the observed count rate relative to the background estimate exist. We test the new software on archival data from the NASA Fermi Gamma-ray Burst Monitor (GBM), which has a collecting area and background level of the same order of magnitude to those of HERMES Pathfinder. The neural network performances are discussed and analyzed over period of both high and low solar activity. We were able to confirm events in the Fermi-GBM catalog, both solar flares and gamma-ray bursts, and found events, not present in Fermi-GBM database, that could be attributed to solar flares, terrestrial gamma-ray flashes, gamma-ray bursts and galactic X-ray flashes. Seven of these are selected and further analyzed, providing an estimate of localisation and a tentative classification.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Experimental Astronomy
Experimental Astronomy 地学天文-天文与天体物理
CiteScore
5.30
自引率
3.30%
发文量
57
审稿时长
6-12 weeks
期刊介绍: Many new instruments for observing astronomical objects at a variety of wavelengths have been and are continually being developed. Furthermore, a vast amount of effort is being put into the development of new techniques for data analysis in order to cope with great streams of data collected by these instruments. Experimental Astronomy acts as a medium for the publication of papers of contemporary scientific interest on astrophysical instrumentation and methods necessary for the conduct of astronomy at all wavelength fields. Experimental Astronomy publishes full-length articles, research letters and reviews on developments in detection techniques, instruments, and data analysis and image processing techniques. Occasional special issues are published, giving an in-depth presentation of the instrumentation and/or analysis connected with specific projects, such as satellite experiments or ground-based telescopes, or of specialized techniques.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信