无钴层状钙钛矿RBaCuFeO5+δ (R = 4f镧系)作为析氧反应的电催化剂

EES catalysis Pub Date : 2023-10-31 DOI:10.1039/D3EY00142C
Elena Marelli, Jike Lyu, Mickaël Morin, Maxime Leménager, Tian Shang, N. Sena Yüzbasi, Dino Aegerter, Jinzhen Huang, Niéli D. Daffé, Adam H. Clark, Denis Sheptyakov, Thomas Graule, Maarten Nachtegaal, Ekaterina Pomjakushina, Thomas J. Schmidt, Matthias Krack, Emiliana Fabbri and Marisa Medarde
{"title":"无钴层状钙钛矿RBaCuFeO5+δ (R = 4f镧系)作为析氧反应的电催化剂","authors":"Elena Marelli, Jike Lyu, Mickaël Morin, Maxime Leménager, Tian Shang, N. Sena Yüzbasi, Dino Aegerter, Jinzhen Huang, Niéli D. Daffé, Adam H. Clark, Denis Sheptyakov, Thomas Graule, Maarten Nachtegaal, Ekaterina Pomjakushina, Thomas J. Schmidt, Matthias Krack, Emiliana Fabbri and Marisa Medarde","doi":"10.1039/D3EY00142C","DOIUrl":null,"url":null,"abstract":"<p >Co-based perovskite oxides are intensively studied as promising catalysts for electrochemical water splitting in an alkaline environment. However, the increasing Co demand by the battery industry is pushing the search for Co-free alternatives. Here we report a systematic study of the Co-free layered perovskite famil<em>y</em> RBaCuFeO<small><sub>5+<em>δ</em></sub></small> (R = 4f lanthanide), where we uncover the existence of clear correlations between electrochemical properties and several physicochemical descriptors. Using a combination of advanced neutron and X-ray synchrotron techniques with <em>ab initio</em> DFT calculations we demonstrate and rationalize the positive impact of a large R ionic radius in their oxygen evolution reaction (OER) activity. We also reveal that, in these materials, Fe<small><sup>3+</sup></small> is the transition metal cation the most prone to donate electrons. We also show that similar R<small><sup>3+</sup></small>/Ba<small><sup>2+</sup></small> ionic radii favor the incorporation and mobility of oxygen in the layered perovskite structure and increase the number of available O diffusion paths, which have an additional, positive impact on both, the electric conductivity and the OER process. An unexpected result is the observation of a clear surface reconstruction exclusively in oxygen-rich samples (<em>δ</em> &gt; 0), a fact that could be related to their superior OER activity. The encouraging intrinsic OER values obtained for the most active electrocatalyst (LaBaCuFeO<small><sub>5.49</sub></small>), together with the possibility of industrially producing this material in nanocrystalline form should inspire the design of other Co-free oxide catalysts with optimal properties for electrochemical water splitting.</p>","PeriodicalId":72877,"journal":{"name":"EES catalysis","volume":" 1","pages":" 335-350"},"PeriodicalIF":0.0000,"publicationDate":"2023-10-31","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://pubs.rsc.org/en/content/articlepdf/2024/ey/d3ey00142c?page=search","citationCount":"0","resultStr":"{\"title\":\"Cobalt-free layered perovskites RBaCuFeO5+δ (R = 4f lanthanide) as electrocatalysts for the oxygen evolution reaction†\",\"authors\":\"Elena Marelli, Jike Lyu, Mickaël Morin, Maxime Leménager, Tian Shang, N. Sena Yüzbasi, Dino Aegerter, Jinzhen Huang, Niéli D. Daffé, Adam H. Clark, Denis Sheptyakov, Thomas Graule, Maarten Nachtegaal, Ekaterina Pomjakushina, Thomas J. Schmidt, Matthias Krack, Emiliana Fabbri and Marisa Medarde\",\"doi\":\"10.1039/D3EY00142C\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p >Co-based perovskite oxides are intensively studied as promising catalysts for electrochemical water splitting in an alkaline environment. However, the increasing Co demand by the battery industry is pushing the search for Co-free alternatives. Here we report a systematic study of the Co-free layered perovskite famil<em>y</em> RBaCuFeO<small><sub>5+<em>δ</em></sub></small> (R = 4f lanthanide), where we uncover the existence of clear correlations between electrochemical properties and several physicochemical descriptors. Using a combination of advanced neutron and X-ray synchrotron techniques with <em>ab initio</em> DFT calculations we demonstrate and rationalize the positive impact of a large R ionic radius in their oxygen evolution reaction (OER) activity. We also reveal that, in these materials, Fe<small><sup>3+</sup></small> is the transition metal cation the most prone to donate electrons. We also show that similar R<small><sup>3+</sup></small>/Ba<small><sup>2+</sup></small> ionic radii favor the incorporation and mobility of oxygen in the layered perovskite structure and increase the number of available O diffusion paths, which have an additional, positive impact on both, the electric conductivity and the OER process. An unexpected result is the observation of a clear surface reconstruction exclusively in oxygen-rich samples (<em>δ</em> &gt; 0), a fact that could be related to their superior OER activity. The encouraging intrinsic OER values obtained for the most active electrocatalyst (LaBaCuFeO<small><sub>5.49</sub></small>), together with the possibility of industrially producing this material in nanocrystalline form should inspire the design of other Co-free oxide catalysts with optimal properties for electrochemical water splitting.</p>\",\"PeriodicalId\":72877,\"journal\":{\"name\":\"EES catalysis\",\"volume\":\" 1\",\"pages\":\" 335-350\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2023-10-31\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://pubs.rsc.org/en/content/articlepdf/2024/ey/d3ey00142c?page=search\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"EES catalysis\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://pubs.rsc.org/en/content/articlelanding/2024/ey/d3ey00142c\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"EES catalysis","FirstCategoryId":"1085","ListUrlMain":"https://pubs.rsc.org/en/content/articlelanding/2024/ey/d3ey00142c","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

钴基钙钛矿氧化物作为碱性环境下电化学水分解的催化剂得到了广泛的研究。然而,电池行业不断增长的钴需求正在推动寻找无钴替代品。在这里,我们报告了一项系统的无co层状钙钛矿家族RBaCuFeO5+δ (R = 4f镧系)的研究,在那里我们发现了电化学性能和几个物理化学描述符之间存在明确的相关性。利用先进的中子和x射线同步加速器技术与从头算DFT计算相结合,我们证明并合理化了大R离子半径对它们的析氧反应(OER)活性的积极影响。我们还发现,在这些材料中,Fe3+是最容易给出电子的过渡金属阳离子。我们还发现,相似的R3+/Ba2+离子半径有利于氧在层状钙钛矿结构中的结合和迁移,并增加了可用的O扩散路径的数量,这对电导率和OER过程都有额外的积极影响。一个意想不到的结果是在富氧样品中观察到清晰的表面重建(δ >0),这一事实可能与他们较强的OER活性有关。最活跃的电催化剂(LaBaCuFeO5.49)获得了令人鼓舞的内在OER值,加上工业生产纳米晶形式这种材料的可能性,应该启发设计其他具有最佳电化学水分解性能的无co氧化物催化剂。
本文章由计算机程序翻译,如有差异,请以英文原文为准。

Cobalt-free layered perovskites RBaCuFeO5+δ (R = 4f lanthanide) as electrocatalysts for the oxygen evolution reaction†

Cobalt-free layered perovskites RBaCuFeO5+δ (R = 4f lanthanide) as electrocatalysts for the oxygen evolution reaction†

Cobalt-free layered perovskites RBaCuFeO5+δ (R = 4f lanthanide) as electrocatalysts for the oxygen evolution reaction†

Co-based perovskite oxides are intensively studied as promising catalysts for electrochemical water splitting in an alkaline environment. However, the increasing Co demand by the battery industry is pushing the search for Co-free alternatives. Here we report a systematic study of the Co-free layered perovskite family RBaCuFeO5+δ (R = 4f lanthanide), where we uncover the existence of clear correlations between electrochemical properties and several physicochemical descriptors. Using a combination of advanced neutron and X-ray synchrotron techniques with ab initio DFT calculations we demonstrate and rationalize the positive impact of a large R ionic radius in their oxygen evolution reaction (OER) activity. We also reveal that, in these materials, Fe3+ is the transition metal cation the most prone to donate electrons. We also show that similar R3+/Ba2+ ionic radii favor the incorporation and mobility of oxygen in the layered perovskite structure and increase the number of available O diffusion paths, which have an additional, positive impact on both, the electric conductivity and the OER process. An unexpected result is the observation of a clear surface reconstruction exclusively in oxygen-rich samples (δ > 0), a fact that could be related to their superior OER activity. The encouraging intrinsic OER values obtained for the most active electrocatalyst (LaBaCuFeO5.49), together with the possibility of industrially producing this material in nanocrystalline form should inspire the design of other Co-free oxide catalysts with optimal properties for electrochemical water splitting.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信