基于训练图像的条件生成对抗网络先验抽样随机相反演

IF 4.6 Q2 MATERIALS SCIENCE, BIOMATERIALS
Runhai Feng, Klaus Mosegaard, Dario Grana, Tapan Mukerji, Thomas Mejer Hansen
{"title":"基于训练图像的条件生成对抗网络先验抽样随机相反演","authors":"Runhai Feng, Klaus Mosegaard, Dario Grana, Tapan Mukerji, Thomas Mejer Hansen","doi":"10.1007/s11004-023-10119-0","DOIUrl":null,"url":null,"abstract":"<p>Probabilistic methods for geophysical inverse problems allow the use of arbitrarily complex prior information in principle. Geostatistical techniques, such as multiple-point statistics (MPS), for describing spatial correlation models and higher-order statistics have been proposed to achieve this inversion task, in which stochastic algorithms such as Markov chain Monte Carlo (McMC) are incorporated. However, stochastic sampling and optimization often require a large number of iterations, and thus geostatistical sampling of the prior model can become computationally demanding. To overcome this challenge, a deep learning model, namely conditional generative adversarial networks (CGANs), is proposed, which allows one to perform a random walk to sample the complex prior distribution. CGANs simulate conditional realizations conditioned to the available hard conditioning data, that is, direct measurements, while preserving the geometrical structure of the model parameters of interest and replicating the sequential Gibbs sampling algorithm. Despite the need for a training step, for a large number of simulations, CGANs are more efficient than traditional geostatistical simulation algorithms such as single normal equation simulation (SNESIM). The proposed methodology is used as part of the extended Metropolis algorithm to predict the distributions of categorical facies in two examples, a dune environment in the Gobi Desert and a channel system in an idealized subsurface reservoir, from indirect observational data such as acoustic impedance. The inversion results are compared to the extended Metropolis algorithm using standard MPS sampling.</p>","PeriodicalId":2,"journal":{"name":"ACS Applied Bio Materials","volume":null,"pages":null},"PeriodicalIF":4.6000,"publicationDate":"2023-11-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Stochastic Facies Inversion with Prior Sampling by Conditional Generative Adversarial Networks Based on Training Image\",\"authors\":\"Runhai Feng, Klaus Mosegaard, Dario Grana, Tapan Mukerji, Thomas Mejer Hansen\",\"doi\":\"10.1007/s11004-023-10119-0\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>Probabilistic methods for geophysical inverse problems allow the use of arbitrarily complex prior information in principle. Geostatistical techniques, such as multiple-point statistics (MPS), for describing spatial correlation models and higher-order statistics have been proposed to achieve this inversion task, in which stochastic algorithms such as Markov chain Monte Carlo (McMC) are incorporated. However, stochastic sampling and optimization often require a large number of iterations, and thus geostatistical sampling of the prior model can become computationally demanding. To overcome this challenge, a deep learning model, namely conditional generative adversarial networks (CGANs), is proposed, which allows one to perform a random walk to sample the complex prior distribution. CGANs simulate conditional realizations conditioned to the available hard conditioning data, that is, direct measurements, while preserving the geometrical structure of the model parameters of interest and replicating the sequential Gibbs sampling algorithm. Despite the need for a training step, for a large number of simulations, CGANs are more efficient than traditional geostatistical simulation algorithms such as single normal equation simulation (SNESIM). The proposed methodology is used as part of the extended Metropolis algorithm to predict the distributions of categorical facies in two examples, a dune environment in the Gobi Desert and a channel system in an idealized subsurface reservoir, from indirect observational data such as acoustic impedance. The inversion results are compared to the extended Metropolis algorithm using standard MPS sampling.</p>\",\"PeriodicalId\":2,\"journal\":{\"name\":\"ACS Applied Bio Materials\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":4.6000,\"publicationDate\":\"2023-11-23\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"ACS Applied Bio Materials\",\"FirstCategoryId\":\"89\",\"ListUrlMain\":\"https://doi.org/10.1007/s11004-023-10119-0\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"MATERIALS SCIENCE, BIOMATERIALS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"ACS Applied Bio Materials","FirstCategoryId":"89","ListUrlMain":"https://doi.org/10.1007/s11004-023-10119-0","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MATERIALS SCIENCE, BIOMATERIALS","Score":null,"Total":0}
引用次数: 0

摘要

地球物理逆问题的概率方法原则上允许使用任意复杂的先验信息。地质统计学技术,如多点统计(MPS),用于描述空间相关模型和高阶统计已被提出来实现这一反演任务,其中随机算法,如马尔可夫链蒙特卡罗(McMC)被纳入。然而,随机抽样和优化往往需要大量的迭代,因此对先前模型的地质统计抽样可能会变得计算量很大。为了克服这一挑战,提出了一种深度学习模型,即条件生成对抗网络(cgan),它允许人们执行随机漫步来对复杂的先验分布进行采样。cgan模拟以可用硬条件数据(即直接测量)为条件的条件实现,同时保留感兴趣的模型参数的几何结构并复制顺序Gibbs采样算法。尽管需要一个训练步骤,但对于大量的模拟,cgan比传统的地质统计学模拟算法(如单正态方程模拟(SNESIM))更有效。所提出的方法作为扩展Metropolis算法的一部分,用于从声阻抗等间接观测数据预测两个示例中的分类相分布,即戈壁沙漠的沙丘环境和理想地下储层中的河道系统。将反演结果与采用标准MPS采样的扩展Metropolis算法进行了比较。
本文章由计算机程序翻译,如有差异,请以英文原文为准。

Stochastic Facies Inversion with Prior Sampling by Conditional Generative Adversarial Networks Based on Training Image

Stochastic Facies Inversion with Prior Sampling by Conditional Generative Adversarial Networks Based on Training Image

Probabilistic methods for geophysical inverse problems allow the use of arbitrarily complex prior information in principle. Geostatistical techniques, such as multiple-point statistics (MPS), for describing spatial correlation models and higher-order statistics have been proposed to achieve this inversion task, in which stochastic algorithms such as Markov chain Monte Carlo (McMC) are incorporated. However, stochastic sampling and optimization often require a large number of iterations, and thus geostatistical sampling of the prior model can become computationally demanding. To overcome this challenge, a deep learning model, namely conditional generative adversarial networks (CGANs), is proposed, which allows one to perform a random walk to sample the complex prior distribution. CGANs simulate conditional realizations conditioned to the available hard conditioning data, that is, direct measurements, while preserving the geometrical structure of the model parameters of interest and replicating the sequential Gibbs sampling algorithm. Despite the need for a training step, for a large number of simulations, CGANs are more efficient than traditional geostatistical simulation algorithms such as single normal equation simulation (SNESIM). The proposed methodology is used as part of the extended Metropolis algorithm to predict the distributions of categorical facies in two examples, a dune environment in the Gobi Desert and a channel system in an idealized subsurface reservoir, from indirect observational data such as acoustic impedance. The inversion results are compared to the extended Metropolis algorithm using standard MPS sampling.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
ACS Applied Bio Materials
ACS Applied Bio Materials Chemistry-Chemistry (all)
CiteScore
9.40
自引率
2.10%
发文量
464
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信