{"title":"关于线性循环序列代数结构的一些注意事项","authors":"Gessica Alecci, Stefano Barbero, Nadir Murru","doi":"10.1007/s11587-023-00826-5","DOIUrl":null,"url":null,"abstract":"<p>Several operations can be defined on the set of all linear recurrent sequences, such as the binomial convolution (Hurwitz product) or the multinomial convolution (Newton product). Using elementary techniques, we prove that this set equipped with the termwise sum and the aforementioned products is an <i>R</i>-algebra, given any commutative ring <i>R</i> with identity. Moreover, we provide explicitly a characteristic polynomial of the Hurwitz product and Newton product of any two linear recurrent sequences. Finally, we also investigate whether these <i>R</i>-algebras are isomorphic, considering also the <i>R</i>-algebras obtained using the Hadamard product and the convolution product.\n</p>","PeriodicalId":21373,"journal":{"name":"Ricerche di Matematica","volume":"84 1","pages":""},"PeriodicalIF":1.1000,"publicationDate":"2023-11-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Some notes on the algebraic structure of linear recurrent sequences\",\"authors\":\"Gessica Alecci, Stefano Barbero, Nadir Murru\",\"doi\":\"10.1007/s11587-023-00826-5\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>Several operations can be defined on the set of all linear recurrent sequences, such as the binomial convolution (Hurwitz product) or the multinomial convolution (Newton product). Using elementary techniques, we prove that this set equipped with the termwise sum and the aforementioned products is an <i>R</i>-algebra, given any commutative ring <i>R</i> with identity. Moreover, we provide explicitly a characteristic polynomial of the Hurwitz product and Newton product of any two linear recurrent sequences. Finally, we also investigate whether these <i>R</i>-algebras are isomorphic, considering also the <i>R</i>-algebras obtained using the Hadamard product and the convolution product.\\n</p>\",\"PeriodicalId\":21373,\"journal\":{\"name\":\"Ricerche di Matematica\",\"volume\":\"84 1\",\"pages\":\"\"},\"PeriodicalIF\":1.1000,\"publicationDate\":\"2023-11-27\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Ricerche di Matematica\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://doi.org/10.1007/s11587-023-00826-5\",\"RegionNum\":4,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"MATHEMATICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Ricerche di Matematica","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.1007/s11587-023-00826-5","RegionNum":4,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATHEMATICS","Score":null,"Total":0}
Some notes on the algebraic structure of linear recurrent sequences
Several operations can be defined on the set of all linear recurrent sequences, such as the binomial convolution (Hurwitz product) or the multinomial convolution (Newton product). Using elementary techniques, we prove that this set equipped with the termwise sum and the aforementioned products is an R-algebra, given any commutative ring R with identity. Moreover, we provide explicitly a characteristic polynomial of the Hurwitz product and Newton product of any two linear recurrent sequences. Finally, we also investigate whether these R-algebras are isomorphic, considering also the R-algebras obtained using the Hadamard product and the convolution product.
期刊介绍:
“Ricerche di Matematica” publishes high-quality research articles in any field of pure and applied mathematics. Articles must be original and written in English. Details about article submission can be found online.