微波加热问题解的存在性及稳定性和不稳定性的Liapunoff判据

IF 1.1 4区 数学 Q1 MATHEMATICS
Giovanni Cimatti
{"title":"微波加热问题解的存在性及稳定性和不稳定性的Liapunoff判据","authors":"Giovanni Cimatti","doi":"10.1007/s11587-023-00825-6","DOIUrl":null,"url":null,"abstract":"<p>The Galerkin’s method is applied to prove the existence of at least one solution of the initial boundary value problem for the nonlinear system of partial differential equations modelling the electromagnetic heating of materials. In addition a criteria of stability and instability based on a Liapunoff function is presented.</p>","PeriodicalId":21373,"journal":{"name":"Ricerche di Matematica","volume":"62 1","pages":""},"PeriodicalIF":1.1000,"publicationDate":"2023-11-26","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Existence of solutions for the problem of microwave heating and a Liapunoff criteria for stability and instability\",\"authors\":\"Giovanni Cimatti\",\"doi\":\"10.1007/s11587-023-00825-6\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>The Galerkin’s method is applied to prove the existence of at least one solution of the initial boundary value problem for the nonlinear system of partial differential equations modelling the electromagnetic heating of materials. In addition a criteria of stability and instability based on a Liapunoff function is presented.</p>\",\"PeriodicalId\":21373,\"journal\":{\"name\":\"Ricerche di Matematica\",\"volume\":\"62 1\",\"pages\":\"\"},\"PeriodicalIF\":1.1000,\"publicationDate\":\"2023-11-26\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Ricerche di Matematica\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://doi.org/10.1007/s11587-023-00825-6\",\"RegionNum\":4,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"MATHEMATICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Ricerche di Matematica","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.1007/s11587-023-00825-6","RegionNum":4,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 0

摘要

应用伽辽金方法证明了材料电磁加热非线性偏微分方程组初边值问题至少有一个解的存在性。此外,还提出了基于李雅普诺夫函数的稳定性和不稳定性判据。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Existence of solutions for the problem of microwave heating and a Liapunoff criteria for stability and instability

The Galerkin’s method is applied to prove the existence of at least one solution of the initial boundary value problem for the nonlinear system of partial differential equations modelling the electromagnetic heating of materials. In addition a criteria of stability and instability based on a Liapunoff function is presented.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Ricerche di Matematica
Ricerche di Matematica Mathematics-Applied Mathematics
CiteScore
3.00
自引率
8.30%
发文量
61
期刊介绍: “Ricerche di Matematica” publishes high-quality research articles in any field of pure and applied mathematics. Articles must be original and written in English. Details about article submission can be found online.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信