{"title":"哈勃常数的买家指南","authors":"Paul Shah, Pablo Lemos, Ofer Lahav","doi":"10.1007/s00159-021-00137-4","DOIUrl":null,"url":null,"abstract":"<div><p>Since the expansion of the universe was first established by Edwin Hubble and Georges Lemaître about a century ago, the Hubble constant <span>\\(H_0\\)</span> which measures its rate has been of great interest to astronomers. Besides being interesting in its own right, few properties of the universe can be deduced without it. In the last decade, a significant gap has emerged between different methods of measuring it, some anchored in the nearby universe, others at cosmological distances. The SH0ES team has found <span>\\(H_0 = 73.2 \\pm 1.3 \\; \\;\\,\\hbox {kms}^{-1} \\,\\hbox {Mpc}^{-1}\\)</span> locally, whereas the value found for the early universe by the Planck Collaboration is <span>\\(H_0 = 67.4 \\pm 0.5 \\; \\;\\,\\hbox {kms}^{-1} \\,\\hbox {Mpc}^{-1}\\)</span> from measurements of the cosmic microwave background. Is this gap a sign that the well-established <span>\\({\\varLambda} {\\text{CDM}}\\)</span> cosmological model is somehow incomplete? Or are there unknown systematics? And more practically, how should humble astronomers pick between competing claims if they need to assume a value for a certain purpose? In this article, we review results and what changes to the cosmological model could be needed to accommodate them all. For astronomers in a hurry, we provide a buyer’s guide to the results, and make recommendations.</p></div>","PeriodicalId":785,"journal":{"name":"The Astronomy and Astrophysics Review","volume":"29 1","pages":""},"PeriodicalIF":27.8000,"publicationDate":"2021-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://link.springer.com/content/pdf/10.1007/s00159-021-00137-4.pdf","citationCount":"0","resultStr":"{\"title\":\"A buyer’s guide to the Hubble constant\",\"authors\":\"Paul Shah, Pablo Lemos, Ofer Lahav\",\"doi\":\"10.1007/s00159-021-00137-4\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>Since the expansion of the universe was first established by Edwin Hubble and Georges Lemaître about a century ago, the Hubble constant <span>\\\\(H_0\\\\)</span> which measures its rate has been of great interest to astronomers. Besides being interesting in its own right, few properties of the universe can be deduced without it. In the last decade, a significant gap has emerged between different methods of measuring it, some anchored in the nearby universe, others at cosmological distances. The SH0ES team has found <span>\\\\(H_0 = 73.2 \\\\pm 1.3 \\\\; \\\\;\\\\,\\\\hbox {kms}^{-1} \\\\,\\\\hbox {Mpc}^{-1}\\\\)</span> locally, whereas the value found for the early universe by the Planck Collaboration is <span>\\\\(H_0 = 67.4 \\\\pm 0.5 \\\\; \\\\;\\\\,\\\\hbox {kms}^{-1} \\\\,\\\\hbox {Mpc}^{-1}\\\\)</span> from measurements of the cosmic microwave background. Is this gap a sign that the well-established <span>\\\\({\\\\varLambda} {\\\\text{CDM}}\\\\)</span> cosmological model is somehow incomplete? Or are there unknown systematics? And more practically, how should humble astronomers pick between competing claims if they need to assume a value for a certain purpose? In this article, we review results and what changes to the cosmological model could be needed to accommodate them all. For astronomers in a hurry, we provide a buyer’s guide to the results, and make recommendations.</p></div>\",\"PeriodicalId\":785,\"journal\":{\"name\":\"The Astronomy and Astrophysics Review\",\"volume\":\"29 1\",\"pages\":\"\"},\"PeriodicalIF\":27.8000,\"publicationDate\":\"2021-12-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://link.springer.com/content/pdf/10.1007/s00159-021-00137-4.pdf\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"The Astronomy and Astrophysics Review\",\"FirstCategoryId\":\"4\",\"ListUrlMain\":\"https://link.springer.com/article/10.1007/s00159-021-00137-4\",\"RegionNum\":1,\"RegionCategory\":\"物理与天体物理\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"ASTRONOMY & ASTROPHYSICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"The Astronomy and Astrophysics Review","FirstCategoryId":"4","ListUrlMain":"https://link.springer.com/article/10.1007/s00159-021-00137-4","RegionNum":1,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ASTRONOMY & ASTROPHYSICS","Score":null,"Total":0}
Since the expansion of the universe was first established by Edwin Hubble and Georges Lemaître about a century ago, the Hubble constant \(H_0\) which measures its rate has been of great interest to astronomers. Besides being interesting in its own right, few properties of the universe can be deduced without it. In the last decade, a significant gap has emerged between different methods of measuring it, some anchored in the nearby universe, others at cosmological distances. The SH0ES team has found \(H_0 = 73.2 \pm 1.3 \; \;\,\hbox {kms}^{-1} \,\hbox {Mpc}^{-1}\) locally, whereas the value found for the early universe by the Planck Collaboration is \(H_0 = 67.4 \pm 0.5 \; \;\,\hbox {kms}^{-1} \,\hbox {Mpc}^{-1}\) from measurements of the cosmic microwave background. Is this gap a sign that the well-established \({\varLambda} {\text{CDM}}\) cosmological model is somehow incomplete? Or are there unknown systematics? And more practically, how should humble astronomers pick between competing claims if they need to assume a value for a certain purpose? In this article, we review results and what changes to the cosmological model could be needed to accommodate them all. For astronomers in a hurry, we provide a buyer’s guide to the results, and make recommendations.
期刊介绍:
The Astronomy and Astrophysics Review is a journal that covers all areas of astronomy and astrophysics. It includes subjects related to other fields such as laboratory or particle physics, cosmic ray physics, studies in the solar system, astrobiology, instrumentation, and computational and statistical methods with specific astronomical applications. The frequency of review articles depends on the level of activity in different areas. The journal focuses on publishing review articles that are scientifically rigorous and easily comprehensible. These articles serve as a valuable resource for scientists, students, researchers, and lecturers who want to explore new or unfamiliar fields. The journal is abstracted and indexed in various databases including the Astrophysics Data System (ADS), BFI List, CNKI, CNPIEC, Current Contents/Physical, Chemical and Earth Sciences, Dimensions, EBSCO Academic Search, EI Compendex, Japanese Science and Technology, and more.