{"title":"Fredholm行列式和zn -mKdV/ zn -sinh-Gordon层次结构","authors":"Chuanzhong Li, Wenna Liu","doi":"10.1515/ijnsns-2020-0188","DOIUrl":null,"url":null,"abstract":"The general Fredholm determinants have a close connection with integrable systems. Inspired by the connection between Fredholm determinants and mKdV/sinh-Gordon hierarchies, we construct a <jats:italic>Z</jats:italic> <jats:sub> <jats:italic>n</jats:italic> </jats:sub>-Fredholm determinant and show how the <jats:italic>Z</jats:italic> <jats:sub> <jats:italic>n</jats:italic> </jats:sub>-Fredholm determinants can be governed by <jats:italic>Z</jats:italic> <jats:sub> <jats:italic>n</jats:italic> </jats:sub>-mKdV/<jats:italic>Z</jats:italic> <jats:sub> <jats:italic>n</jats:italic> </jats:sub>-sinh-Gordon hierarchies.","PeriodicalId":50304,"journal":{"name":"International Journal of Nonlinear Sciences and Numerical Simulation","volume":"32 7","pages":""},"PeriodicalIF":1.4000,"publicationDate":"2022-10-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Fredholm determinants and Z n -mKdV/Z n -sinh-Gordon hierarchies\",\"authors\":\"Chuanzhong Li, Wenna Liu\",\"doi\":\"10.1515/ijnsns-2020-0188\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"The general Fredholm determinants have a close connection with integrable systems. Inspired by the connection between Fredholm determinants and mKdV/sinh-Gordon hierarchies, we construct a <jats:italic>Z</jats:italic> <jats:sub> <jats:italic>n</jats:italic> </jats:sub>-Fredholm determinant and show how the <jats:italic>Z</jats:italic> <jats:sub> <jats:italic>n</jats:italic> </jats:sub>-Fredholm determinants can be governed by <jats:italic>Z</jats:italic> <jats:sub> <jats:italic>n</jats:italic> </jats:sub>-mKdV/<jats:italic>Z</jats:italic> <jats:sub> <jats:italic>n</jats:italic> </jats:sub>-sinh-Gordon hierarchies.\",\"PeriodicalId\":50304,\"journal\":{\"name\":\"International Journal of Nonlinear Sciences and Numerical Simulation\",\"volume\":\"32 7\",\"pages\":\"\"},\"PeriodicalIF\":1.4000,\"publicationDate\":\"2022-10-19\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"International Journal of Nonlinear Sciences and Numerical Simulation\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://doi.org/10.1515/ijnsns-2020-0188\",\"RegionNum\":4,\"RegionCategory\":\"工程技术\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"ENGINEERING, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"International Journal of Nonlinear Sciences and Numerical Simulation","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.1515/ijnsns-2020-0188","RegionNum":4,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"ENGINEERING, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0
摘要
一般的Fredholm行列式与可积系统有密切的联系。受Fredholm行列式和mKdV/sinh-Gordon层次结构之间联系的启发,我们构造了一个Z n -Fredholm行列式,并展示了Z n -Fredholm行列式如何被Z n -mKdV/Z n -sinh-Gordon层次结构所控制。
Fredholm determinants and Z n -mKdV/Z n -sinh-Gordon hierarchies
The general Fredholm determinants have a close connection with integrable systems. Inspired by the connection between Fredholm determinants and mKdV/sinh-Gordon hierarchies, we construct a Zn-Fredholm determinant and show how the Zn-Fredholm determinants can be governed by Zn-mKdV/Zn-sinh-Gordon hierarchies.
期刊介绍:
The International Journal of Nonlinear Sciences and Numerical Simulation publishes original papers on all subjects relevant to nonlinear sciences and numerical simulation. The journal is directed at Researchers in Nonlinear Sciences, Engineers, and Computational Scientists, Economists, and others, who either study the nature of nonlinear problems or conduct numerical simulations of nonlinear problems.