水稻对末端干旱胁迫的生化、生理和分子响应:叶片和根系的转录组分析揭示了关键的胁迫响应基因

IF 16.4 1区 化学 Q1 CHEMISTRY, MULTIDISCIPLINARY
Aruna Tyagi, Suresh Kumar, Trilochan Mohapatra
{"title":"水稻对末端干旱胁迫的生化、生理和分子响应:叶片和根系的转录组分析揭示了关键的胁迫响应基因","authors":"Aruna Tyagi, Suresh Kumar, Trilochan Mohapatra","doi":"10.1007/s13562-023-00865-x","DOIUrl":null,"url":null,"abstract":"<p>Drought stress has been known to adversely affect growth, development, and productivity of plants to varying extent. Being a multifaceted trait, drought tolerance involves interaction of an array of genes, pathways, and mechanisms. A unique regulatory scheme is adopted by different plants, which provides tolerance to drought stress in association with biochemical and physiological mechanisms. Transcriptome analysis of a drought tolerant [Nagina 22 (N-22)] and drought sensitive (IR-64) cultivars provides insights into the genes/pathways/mechanisms involved in terminal drought stress tolerance. In the present study, comparative physio-biochemical analyses of the rice cultivars under terminal drought stress substantiated their performance. Whole transcriptome analysis of leaf and root from the rice cultivars exposed to terminal drought stress revealed 6077 and 10,050 differentially expressed genes (DEGs) in leaf of N-22 and IR-64, respectively, under drought stress. A maximum of 2682 genes were up-regulated exclusively in N-22 while 7198 genes were down-regulated exclusively in leaf of IR-64. Interestingly, the highest number (2594) of genes was down-regulated exclusively in roots of IR-64, while only 1497 gene were up-regulated exclusively in root of N-22. Differential expression of <i>OsNAC10</i>, <i>OsbZIP23</i>, <i>OsABA8ox1</i>, <i>OsCPK4</i>, <i>OsLEA3</i>, and <i>OsNCED4</i> along with the GO terms enriched with up-regulated genes for transcription factors (TFs), redox homeostasis, and ABA signaling in N-22 under terminal drought stress play crucial roles in stress tolerance. The stress-responsive genes for transcription factors, redox homeostasis, and ABA signaling up-regulated in N-22 were mainly responsible for terminal drought tolerance. These stress-associated genes can be utilized for genetic improvement of rice for drought tolerance.</p>","PeriodicalId":1,"journal":{"name":"Accounts of Chemical Research","volume":null,"pages":null},"PeriodicalIF":16.4000,"publicationDate":"2023-11-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Biochemical, physiological and molecular responses of rice to terminal drought stress: transcriptome profiling of leaf and root reveals the key stress-responsive genes\",\"authors\":\"Aruna Tyagi, Suresh Kumar, Trilochan Mohapatra\",\"doi\":\"10.1007/s13562-023-00865-x\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>Drought stress has been known to adversely affect growth, development, and productivity of plants to varying extent. Being a multifaceted trait, drought tolerance involves interaction of an array of genes, pathways, and mechanisms. A unique regulatory scheme is adopted by different plants, which provides tolerance to drought stress in association with biochemical and physiological mechanisms. Transcriptome analysis of a drought tolerant [Nagina 22 (N-22)] and drought sensitive (IR-64) cultivars provides insights into the genes/pathways/mechanisms involved in terminal drought stress tolerance. In the present study, comparative physio-biochemical analyses of the rice cultivars under terminal drought stress substantiated their performance. Whole transcriptome analysis of leaf and root from the rice cultivars exposed to terminal drought stress revealed 6077 and 10,050 differentially expressed genes (DEGs) in leaf of N-22 and IR-64, respectively, under drought stress. A maximum of 2682 genes were up-regulated exclusively in N-22 while 7198 genes were down-regulated exclusively in leaf of IR-64. Interestingly, the highest number (2594) of genes was down-regulated exclusively in roots of IR-64, while only 1497 gene were up-regulated exclusively in root of N-22. Differential expression of <i>OsNAC10</i>, <i>OsbZIP23</i>, <i>OsABA8ox1</i>, <i>OsCPK4</i>, <i>OsLEA3</i>, and <i>OsNCED4</i> along with the GO terms enriched with up-regulated genes for transcription factors (TFs), redox homeostasis, and ABA signaling in N-22 under terminal drought stress play crucial roles in stress tolerance. The stress-responsive genes for transcription factors, redox homeostasis, and ABA signaling up-regulated in N-22 were mainly responsible for terminal drought tolerance. These stress-associated genes can be utilized for genetic improvement of rice for drought tolerance.</p>\",\"PeriodicalId\":1,\"journal\":{\"name\":\"Accounts of Chemical Research\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":16.4000,\"publicationDate\":\"2023-11-27\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Accounts of Chemical Research\",\"FirstCategoryId\":\"99\",\"ListUrlMain\":\"https://doi.org/10.1007/s13562-023-00865-x\",\"RegionNum\":1,\"RegionCategory\":\"化学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"CHEMISTRY, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Accounts of Chemical Research","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.1007/s13562-023-00865-x","RegionNum":1,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

摘要

干旱胁迫在不同程度上对植物的生长发育和生产力产生不利影响。作为一种多方面的性状,耐旱性涉及一系列基因、途径和机制的相互作用。不同植物对干旱胁迫的耐受性有其独特的调控机制,与生物化学和生理机制有关。耐旱品种Nagina 22 (N-22)和干旱敏感品种IR-64的转录组分析有助于深入了解干旱胁迫末端耐受的基因/途径/机制。本研究通过对不同水稻品种在干旱末期胁迫下的生理生化对比分析,证实了它们的表现。对干旱胁迫下水稻叶片和根系的全转录组分析显示,干旱胁迫下N-22和IR-64叶片差异表达基因(deg)分别为6077个和10050个。在IR-64叶片中,最多有2682个基因被特异上调,7198个基因被特异下调。有趣的是,IR-64根中特异性下调的基因最多(2594个),而N-22根中特异性上调的基因只有1497个。OsNAC10、OsbZIP23、OsABA8ox1、OsCPK4、OsLEA3和OsNCED4的差异表达,以及富含转录因子(tf)、氧化还原稳态和ABA信号表达上调基因的氧化石墨烯在N-22中抗逆性中起着至关重要的作用。在N-22中,转录因子、氧化还原稳态和ABA信号通路等应激响应基因的上调是最终抗旱性的主要原因。这些胁迫相关基因可用于水稻抗旱性的遗传改良。
本文章由计算机程序翻译,如有差异,请以英文原文为准。

Biochemical, physiological and molecular responses of rice to terminal drought stress: transcriptome profiling of leaf and root reveals the key stress-responsive genes

Biochemical, physiological and molecular responses of rice to terminal drought stress: transcriptome profiling of leaf and root reveals the key stress-responsive genes

Drought stress has been known to adversely affect growth, development, and productivity of plants to varying extent. Being a multifaceted trait, drought tolerance involves interaction of an array of genes, pathways, and mechanisms. A unique regulatory scheme is adopted by different plants, which provides tolerance to drought stress in association with biochemical and physiological mechanisms. Transcriptome analysis of a drought tolerant [Nagina 22 (N-22)] and drought sensitive (IR-64) cultivars provides insights into the genes/pathways/mechanisms involved in terminal drought stress tolerance. In the present study, comparative physio-biochemical analyses of the rice cultivars under terminal drought stress substantiated their performance. Whole transcriptome analysis of leaf and root from the rice cultivars exposed to terminal drought stress revealed 6077 and 10,050 differentially expressed genes (DEGs) in leaf of N-22 and IR-64, respectively, under drought stress. A maximum of 2682 genes were up-regulated exclusively in N-22 while 7198 genes were down-regulated exclusively in leaf of IR-64. Interestingly, the highest number (2594) of genes was down-regulated exclusively in roots of IR-64, while only 1497 gene were up-regulated exclusively in root of N-22. Differential expression of OsNAC10, OsbZIP23, OsABA8ox1, OsCPK4, OsLEA3, and OsNCED4 along with the GO terms enriched with up-regulated genes for transcription factors (TFs), redox homeostasis, and ABA signaling in N-22 under terminal drought stress play crucial roles in stress tolerance. The stress-responsive genes for transcription factors, redox homeostasis, and ABA signaling up-regulated in N-22 were mainly responsible for terminal drought tolerance. These stress-associated genes can be utilized for genetic improvement of rice for drought tolerance.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Accounts of Chemical Research
Accounts of Chemical Research 化学-化学综合
CiteScore
31.40
自引率
1.10%
发文量
312
审稿时长
2 months
期刊介绍: Accounts of Chemical Research presents short, concise and critical articles offering easy-to-read overviews of basic research and applications in all areas of chemistry and biochemistry. These short reviews focus on research from the author’s own laboratory and are designed to teach the reader about a research project. In addition, Accounts of Chemical Research publishes commentaries that give an informed opinion on a current research problem. Special Issues online are devoted to a single topic of unusual activity and significance. Accounts of Chemical Research replaces the traditional article abstract with an article "Conspectus." These entries synopsize the research affording the reader a closer look at the content and significance of an article. Through this provision of a more detailed description of the article contents, the Conspectus enhances the article's discoverability by search engines and the exposure for the research.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信