Daniel J. Lewis, Davide Melcangi, Laura Pilossoph, Aidan Toner-Rodgers
{"title":"用模糊聚类回归逼近分组固定效应估计","authors":"Daniel J. Lewis, Davide Melcangi, Laura Pilossoph, Aidan Toner-Rodgers","doi":"10.1002/jae.2997","DOIUrl":null,"url":null,"abstract":"<p>We propose a new, computationally efficient way to approximate the “grouped fixed effects” (GFE) estimator of Bonhomme and Manresa (2015), which estimates grouped patterns of unobserved heterogeneity. To do so, we generalize the fuzzy C-means objective to regression settings. As the clustering exponent \n<math>\n <semantics>\n <mrow>\n <mi>m</mi>\n </mrow>\n <annotation>$$ m $$</annotation>\n </semantics></math> approaches 1, the fuzzy clustering objective converges to the GFE objective, which we recast as a standard generalized method of moments problem. We replicate the empirical results of Bonhomme and Manresa (2015) and show that our estimator delivers almost identical estimates. In simulations, we show that our approach offers improvements in terms of bias, classification accuracy, and computational speed.</p>","PeriodicalId":48363,"journal":{"name":"Journal of Applied Econometrics","volume":null,"pages":null},"PeriodicalIF":2.3000,"publicationDate":"2023-07-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1002/jae.2997","citationCount":"0","resultStr":"{\"title\":\"Approximating grouped fixed effects estimation via fuzzy clustering regression\",\"authors\":\"Daniel J. Lewis, Davide Melcangi, Laura Pilossoph, Aidan Toner-Rodgers\",\"doi\":\"10.1002/jae.2997\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>We propose a new, computationally efficient way to approximate the “grouped fixed effects” (GFE) estimator of Bonhomme and Manresa (2015), which estimates grouped patterns of unobserved heterogeneity. To do so, we generalize the fuzzy C-means objective to regression settings. As the clustering exponent \\n<math>\\n <semantics>\\n <mrow>\\n <mi>m</mi>\\n </mrow>\\n <annotation>$$ m $$</annotation>\\n </semantics></math> approaches 1, the fuzzy clustering objective converges to the GFE objective, which we recast as a standard generalized method of moments problem. We replicate the empirical results of Bonhomme and Manresa (2015) and show that our estimator delivers almost identical estimates. In simulations, we show that our approach offers improvements in terms of bias, classification accuracy, and computational speed.</p>\",\"PeriodicalId\":48363,\"journal\":{\"name\":\"Journal of Applied Econometrics\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":2.3000,\"publicationDate\":\"2023-07-09\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://onlinelibrary.wiley.com/doi/epdf/10.1002/jae.2997\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Applied Econometrics\",\"FirstCategoryId\":\"96\",\"ListUrlMain\":\"https://onlinelibrary.wiley.com/doi/10.1002/jae.2997\",\"RegionNum\":3,\"RegionCategory\":\"经济学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"ECONOMICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Applied Econometrics","FirstCategoryId":"96","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1002/jae.2997","RegionNum":3,"RegionCategory":"经济学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"ECONOMICS","Score":null,"Total":0}
引用次数: 0
摘要
我们提出了一种新的,计算效率高的方法来近似Bonhomme和Manresa(2015)的“分组固定效应”(GFE)估计器,该估计器估计未观察到的异质性的分组模式。为此,我们将模糊c均值目标推广到回归设置。当聚类指数m $$ m $$趋近于1时,模糊聚类目标收敛到GFE目标,并将其重化为矩问题的标准广义方法。我们复制了Bonhomme和Manresa(2015)的实证结果,并表明我们的估计器提供了几乎相同的估计。在模拟中,我们证明了我们的方法在偏差、分类精度和计算速度方面提供了改进。
Approximating grouped fixed effects estimation via fuzzy clustering regression
We propose a new, computationally efficient way to approximate the “grouped fixed effects” (GFE) estimator of Bonhomme and Manresa (2015), which estimates grouped patterns of unobserved heterogeneity. To do so, we generalize the fuzzy C-means objective to regression settings. As the clustering exponent
approaches 1, the fuzzy clustering objective converges to the GFE objective, which we recast as a standard generalized method of moments problem. We replicate the empirical results of Bonhomme and Manresa (2015) and show that our estimator delivers almost identical estimates. In simulations, we show that our approach offers improvements in terms of bias, classification accuracy, and computational speed.
期刊介绍:
The Journal of Applied Econometrics is an international journal published bi-monthly, plus 1 additional issue (total 7 issues). It aims to publish articles of high quality dealing with the application of existing as well as new econometric techniques to a wide variety of problems in economics and related subjects, covering topics in measurement, estimation, testing, forecasting, and policy analysis. The emphasis is on the careful and rigorous application of econometric techniques and the appropriate interpretation of the results. The economic content of the articles is stressed. A special feature of the Journal is its emphasis on the replicability of results by other researchers. To achieve this aim, authors are expected to make available a complete set of the data used as well as any specialised computer programs employed through a readily accessible medium, preferably in a machine-readable form. The use of microcomputers in applied research and transferability of data is emphasised. The Journal also features occasional sections of short papers re-evaluating previously published papers. The intention of the Journal of Applied Econometrics is to provide an outlet for innovative, quantitative research in economics which cuts across areas of specialisation, involves transferable techniques, and is easily replicable by other researchers. Contributions that introduce statistical methods that are applicable to a variety of economic problems are actively encouraged. The Journal also aims to publish review and survey articles that make recent developments in the field of theoretical and applied econometrics more readily accessible to applied economists in general.