混乱的边缘在哪里?

Ron Fulbright
{"title":"混乱的边缘在哪里?","authors":"Ron Fulbright","doi":"arxiv-2304.07176","DOIUrl":null,"url":null,"abstract":"Previous study of cellular automata and random Boolean networks has shown\nemergent behavior occurring at the edge of chaos where the randomness\n(disorder) of internal connections is set to an intermediate critical value.\nThe value at which maximal emergent behavior occurs has been observed to be\ninversely related to the total number of interconnected elements, the\nneighborhood size. However, different equations predict different values. This\npaper presents a study of one-dimensional cellular automata (1DCA) verifying\nthe general relationship but finding a more precise correlation with the radius\nof the neighborhood rather than neighborhood size. Furthermore, the critical\nvalue of the emergent regime is observed to be very close to 1/e hinting at the\ndiscovery of a fundamental characteristic of emergent systems.","PeriodicalId":501231,"journal":{"name":"arXiv - PHYS - Cellular Automata and Lattice Gases","volume":"57 7","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2023-04-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Where is the Edge of Chaos?\",\"authors\":\"Ron Fulbright\",\"doi\":\"arxiv-2304.07176\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Previous study of cellular automata and random Boolean networks has shown\\nemergent behavior occurring at the edge of chaos where the randomness\\n(disorder) of internal connections is set to an intermediate critical value.\\nThe value at which maximal emergent behavior occurs has been observed to be\\ninversely related to the total number of interconnected elements, the\\nneighborhood size. However, different equations predict different values. This\\npaper presents a study of one-dimensional cellular automata (1DCA) verifying\\nthe general relationship but finding a more precise correlation with the radius\\nof the neighborhood rather than neighborhood size. Furthermore, the critical\\nvalue of the emergent regime is observed to be very close to 1/e hinting at the\\ndiscovery of a fundamental characteristic of emergent systems.\",\"PeriodicalId\":501231,\"journal\":{\"name\":\"arXiv - PHYS - Cellular Automata and Lattice Gases\",\"volume\":\"57 7\",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2023-04-14\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"arXiv - PHYS - Cellular Automata and Lattice Gases\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/arxiv-2304.07176\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"arXiv - PHYS - Cellular Automata and Lattice Gases","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/arxiv-2304.07176","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

以往对元胞自动机和随机布尔网络的研究表明,在内部连接的随机性(无序性)被设定为一个中间临界值的混沌边缘,出现了紧急行为。出现最大突发行为的值被观察到与相互连接元素的总数、邻域大小成反比。然而,不同的方程预测不同的值。本文提出了一维元胞自动机(1DCA)的研究,验证了一般关系,但发现了与邻域半径而不是邻域大小的更精确的相关性。此外,观察到紧急状态的临界值非常接近1/e,暗示发现了紧急系统的基本特征。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Where is the Edge of Chaos?
Previous study of cellular automata and random Boolean networks has shown emergent behavior occurring at the edge of chaos where the randomness (disorder) of internal connections is set to an intermediate critical value. The value at which maximal emergent behavior occurs has been observed to be inversely related to the total number of interconnected elements, the neighborhood size. However, different equations predict different values. This paper presents a study of one-dimensional cellular automata (1DCA) verifying the general relationship but finding a more precise correlation with the radius of the neighborhood rather than neighborhood size. Furthermore, the critical value of the emergent regime is observed to be very close to 1/e hinting at the discovery of a fundamental characteristic of emergent systems.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信