元胞自动机的参数估计

Alexey Kazarnikov, Nadja Ray, Heikki Haario, Joona Lappalainen, Andreas Rupp
{"title":"元胞自动机的参数估计","authors":"Alexey Kazarnikov, Nadja Ray, Heikki Haario, Joona Lappalainen, Andreas Rupp","doi":"arxiv-2301.13320","DOIUrl":null,"url":null,"abstract":"Self organizing complex systems can be modeled using cellular automaton\nmodels. However, the parametrization of these models is crucial and\nsignificantly determines the resulting structural pattern. In this research, we\nintroduce and successfully apply a sound statistical method to estimate these\nparameters. The method is based on constructing Gaussian likelihoods using\ncharacteristics of the structures such as the mean particle size. We show that\nour approach is robust with respect to the method parameters, domain size of\npatterns, or CA iterations.","PeriodicalId":501231,"journal":{"name":"arXiv - PHYS - Cellular Automata and Lattice Gases","volume":"61 42","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2023-01-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Parameter estimation for cellular automata\",\"authors\":\"Alexey Kazarnikov, Nadja Ray, Heikki Haario, Joona Lappalainen, Andreas Rupp\",\"doi\":\"arxiv-2301.13320\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Self organizing complex systems can be modeled using cellular automaton\\nmodels. However, the parametrization of these models is crucial and\\nsignificantly determines the resulting structural pattern. In this research, we\\nintroduce and successfully apply a sound statistical method to estimate these\\nparameters. The method is based on constructing Gaussian likelihoods using\\ncharacteristics of the structures such as the mean particle size. We show that\\nour approach is robust with respect to the method parameters, domain size of\\npatterns, or CA iterations.\",\"PeriodicalId\":501231,\"journal\":{\"name\":\"arXiv - PHYS - Cellular Automata and Lattice Gases\",\"volume\":\"61 42\",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2023-01-30\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"arXiv - PHYS - Cellular Automata and Lattice Gases\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/arxiv-2301.13320\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"arXiv - PHYS - Cellular Automata and Lattice Gases","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/arxiv-2301.13320","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

自组织复杂系统可以用元胞自动机模型建模。然而,这些模型的参数化是至关重要的,并显著地决定了最终的结构模式。在本研究中,我们引入并成功地应用了一种可靠的统计方法来估计这些参数。该方法基于利用结构的特征(如平均粒径)构建高斯似然。我们表明,我们的方法在方法参数、模式的域大小或CA迭代方面是鲁棒的。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Parameter estimation for cellular automata
Self organizing complex systems can be modeled using cellular automaton models. However, the parametrization of these models is crucial and significantly determines the resulting structural pattern. In this research, we introduce and successfully apply a sound statistical method to estimate these parameters. The method is based on constructing Gaussian likelihoods using characteristics of the structures such as the mean particle size. We show that our approach is robust with respect to the method parameters, domain size of patterns, or CA iterations.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信