确定性电路中的精确“疏水性”:Floquet-East模型的动态波动

Katja Klobas, Cecilia De Fazio, Juan P. Garrahan
{"title":"确定性电路中的精确“疏水性”:Floquet-East模型的动态波动","authors":"Katja Klobas, Cecilia De Fazio, Juan P. Garrahan","doi":"arxiv-2305.07423","DOIUrl":null,"url":null,"abstract":"We study the dynamics of a classical circuit corresponding to a discrete-time\ndeterministic kinetically constrained East model. We show that -- despite being\ndeterministic -- this \"Floquet-East\" model displays pre-transition behaviour,\nwhich is a dynamical equivalent of the hydrophobic effect in water. By means of\nexact calculations we prove: (i) a change in scaling with size in the\nprobability of inactive space-time regions (akin to the \"energy-entropy\"\ncrossover of the solvation free energy in water), (ii) a first-order phase\ntransition in the dynamical large deviations, (iii) the existence of the\noptimal geometry for local phase separation to accommodate space-time solutes,\nand (iv) a dynamical analog of \"hydrophobic collapse\". We discuss implications\nof these exact results for circuit dynamics more generally.","PeriodicalId":501231,"journal":{"name":"arXiv - PHYS - Cellular Automata and Lattice Gases","volume":"61 46","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2023-05-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Exact \\\"hydrophobicity\\\" in deterministic circuits: dynamical fluctuations in the Floquet-East model\",\"authors\":\"Katja Klobas, Cecilia De Fazio, Juan P. Garrahan\",\"doi\":\"arxiv-2305.07423\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"We study the dynamics of a classical circuit corresponding to a discrete-time\\ndeterministic kinetically constrained East model. We show that -- despite being\\ndeterministic -- this \\\"Floquet-East\\\" model displays pre-transition behaviour,\\nwhich is a dynamical equivalent of the hydrophobic effect in water. By means of\\nexact calculations we prove: (i) a change in scaling with size in the\\nprobability of inactive space-time regions (akin to the \\\"energy-entropy\\\"\\ncrossover of the solvation free energy in water), (ii) a first-order phase\\ntransition in the dynamical large deviations, (iii) the existence of the\\noptimal geometry for local phase separation to accommodate space-time solutes,\\nand (iv) a dynamical analog of \\\"hydrophobic collapse\\\". We discuss implications\\nof these exact results for circuit dynamics more generally.\",\"PeriodicalId\":501231,\"journal\":{\"name\":\"arXiv - PHYS - Cellular Automata and Lattice Gases\",\"volume\":\"61 46\",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2023-05-12\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"arXiv - PHYS - Cellular Automata and Lattice Gases\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/arxiv-2305.07423\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"arXiv - PHYS - Cellular Automata and Lattice Gases","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/arxiv-2305.07423","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

我们研究了与离散时间确定性动力学约束East模型相对应的经典电路的动力学。我们表明,尽管是确定性的,但这种“弗洛克-东”模型显示了过渡前的行为,这是水中疏水效应的动力学等效。通过精确的计算,我们证明了:(i)非活动时空区域概率的尺度变化(类似于水中溶剂化自由能的“能量-熵”交叉),(ii)动态大偏差中的一阶相变,(iii)局部相分离以适应时空溶质的最佳几何结构的存在,以及(iv)“疏水崩溃”的动态模拟。我们将更广泛地讨论这些精确结果对电路动力学的影响。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Exact "hydrophobicity" in deterministic circuits: dynamical fluctuations in the Floquet-East model
We study the dynamics of a classical circuit corresponding to a discrete-time deterministic kinetically constrained East model. We show that -- despite being deterministic -- this "Floquet-East" model displays pre-transition behaviour, which is a dynamical equivalent of the hydrophobic effect in water. By means of exact calculations we prove: (i) a change in scaling with size in the probability of inactive space-time regions (akin to the "energy-entropy" crossover of the solvation free energy in water), (ii) a first-order phase transition in the dynamical large deviations, (iii) the existence of the optimal geometry for local phase separation to accommodate space-time solutes, and (iv) a dynamical analog of "hydrophobic collapse". We discuss implications of these exact results for circuit dynamics more generally.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信