David Starke, Jonathan Bott, Florian Vogelsang, Benedikt Sievert, Jan Barowski, Christian Schulz, Holger Rücker, Andreas Rennings, Daniel Erni, Ilona Rolfes, Nils Pohl
{"title":"一个紧凑的和完全集成的FMCW雷达收发器结合了一个介电透镜","authors":"David Starke, Jonathan Bott, Florian Vogelsang, Benedikt Sievert, Jan Barowski, Christian Schulz, Holger Rücker, Andreas Rennings, Daniel Erni, Ilona Rolfes, Nils Pohl","doi":"10.1017/s1759078723001368","DOIUrl":null,"url":null,"abstract":"Electronic measurement systems in the THz frequency range are often bulky and expensive devices. While some compact single-chip systems operating in the high millimeter-wave frequency range have recently been published, compact measurement systems in the low THz frequency range are still rare. The emergence of new silicon-germanium (SiGe) semiconductor technologies allow the integration of system components, like oscillators, frequency multipliers, frequency dividers, and antennas, operating in the low THz frequency range, into a compact monolithic microwave integrated circuits (MMIC), which contains most components to implement a low-cost and compact frequency-modulated continuous-wave-radar transceiver. This article presents a single transceiver solution containing all necessary components. It introduces a <jats:inline-formula> <jats:alternatives> <jats:inline-graphic xmlns:xlink=\"http://www.w3.org/1999/xlink\" mime-subtype=\"png\" mimetype=\"image\" xlink:href=\"S1759078723001368_inline2.png\" /> <jats:tex-math>$0.48\\,\\mathrm{THz}$</jats:tex-math> </jats:alternatives> </jats:inline-formula> radar transceiver MMIC with a tuning range of <jats:inline-formula> <jats:alternatives> <jats:inline-graphic xmlns:xlink=\"http://www.w3.org/1999/xlink\" mime-subtype=\"png\" mimetype=\"image\" xlink:href=\"S1759078723001368_inline3.png\" /> <jats:tex-math>$43\\,\\mathrm{GHz}$</jats:tex-math> </jats:alternatives> </jats:inline-formula> and an output power of up to <jats:inline-formula> <jats:alternatives> <jats:inline-graphic xmlns:xlink=\"http://www.w3.org/1999/xlink\" mime-subtype=\"png\" mimetype=\"image\" xlink:href=\"S1759078723001368_inline4.png\" /> <jats:tex-math>$-9.4\\,\\mathrm{dBm}$</jats:tex-math> </jats:alternatives> </jats:inline-formula> in the SG13G3 <jats:inline-formula> <jats:alternatives> <jats:inline-graphic xmlns:xlink=\"http://www.w3.org/1999/xlink\" mime-subtype=\"png\" mimetype=\"image\" xlink:href=\"S1759078723001368_inline5.png\" /> <jats:tex-math>$130\\,\\mathrm{nm}$</jats:tex-math> </jats:alternatives> </jats:inline-formula> SiGe technology by IHP. The MMIC is complemented by a dielectric lens antenna design consisting of polytetrafluoroethylene, providing up to <jats:inline-formula> <jats:alternatives> <jats:inline-graphic xmlns:xlink=\"http://www.w3.org/1999/xlink\" mime-subtype=\"png\" mimetype=\"image\" xlink:href=\"S1759078723001368_inline6.png\" /> <jats:tex-math>$39.3\\,\\mathrm d\\mathrm B\\mathrm i$</jats:tex-math> </jats:alternatives> </jats:inline-formula> of directivity and half-power beam widths of 0.95<jats:sup>∘</jats:sup> in transmit and receive direction. The suppression of clutter from unwanted targets deviating from antenna boresight more than 6<jats:sup>∘</jats:sup> is higher than <jats:inline-formula> <jats:alternatives> <jats:inline-graphic xmlns:xlink=\"http://www.w3.org/1999/xlink\" mime-subtype=\"png\" mimetype=\"image\" xlink:href=\"S1759078723001368_inline7.png\" /> <jats:tex-math>$24.6\\,\\mathrm d \\mathrm B$</jats:tex-math> </jats:alternatives> </jats:inline-formula> in E- and H-Plane.","PeriodicalId":49052,"journal":{"name":"International Journal of Microwave and Wireless Technologies","volume":"126 1","pages":""},"PeriodicalIF":1.4000,"publicationDate":"2023-12-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"A compact and fully integrated FMCW radar transceiver combined with a dielectric lens\",\"authors\":\"David Starke, Jonathan Bott, Florian Vogelsang, Benedikt Sievert, Jan Barowski, Christian Schulz, Holger Rücker, Andreas Rennings, Daniel Erni, Ilona Rolfes, Nils Pohl\",\"doi\":\"10.1017/s1759078723001368\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Electronic measurement systems in the THz frequency range are often bulky and expensive devices. While some compact single-chip systems operating in the high millimeter-wave frequency range have recently been published, compact measurement systems in the low THz frequency range are still rare. The emergence of new silicon-germanium (SiGe) semiconductor technologies allow the integration of system components, like oscillators, frequency multipliers, frequency dividers, and antennas, operating in the low THz frequency range, into a compact monolithic microwave integrated circuits (MMIC), which contains most components to implement a low-cost and compact frequency-modulated continuous-wave-radar transceiver. This article presents a single transceiver solution containing all necessary components. It introduces a <jats:inline-formula> <jats:alternatives> <jats:inline-graphic xmlns:xlink=\\\"http://www.w3.org/1999/xlink\\\" mime-subtype=\\\"png\\\" mimetype=\\\"image\\\" xlink:href=\\\"S1759078723001368_inline2.png\\\" /> <jats:tex-math>$0.48\\\\,\\\\mathrm{THz}$</jats:tex-math> </jats:alternatives> </jats:inline-formula> radar transceiver MMIC with a tuning range of <jats:inline-formula> <jats:alternatives> <jats:inline-graphic xmlns:xlink=\\\"http://www.w3.org/1999/xlink\\\" mime-subtype=\\\"png\\\" mimetype=\\\"image\\\" xlink:href=\\\"S1759078723001368_inline3.png\\\" /> <jats:tex-math>$43\\\\,\\\\mathrm{GHz}$</jats:tex-math> </jats:alternatives> </jats:inline-formula> and an output power of up to <jats:inline-formula> <jats:alternatives> <jats:inline-graphic xmlns:xlink=\\\"http://www.w3.org/1999/xlink\\\" mime-subtype=\\\"png\\\" mimetype=\\\"image\\\" xlink:href=\\\"S1759078723001368_inline4.png\\\" /> <jats:tex-math>$-9.4\\\\,\\\\mathrm{dBm}$</jats:tex-math> </jats:alternatives> </jats:inline-formula> in the SG13G3 <jats:inline-formula> <jats:alternatives> <jats:inline-graphic xmlns:xlink=\\\"http://www.w3.org/1999/xlink\\\" mime-subtype=\\\"png\\\" mimetype=\\\"image\\\" xlink:href=\\\"S1759078723001368_inline5.png\\\" /> <jats:tex-math>$130\\\\,\\\\mathrm{nm}$</jats:tex-math> </jats:alternatives> </jats:inline-formula> SiGe technology by IHP. The MMIC is complemented by a dielectric lens antenna design consisting of polytetrafluoroethylene, providing up to <jats:inline-formula> <jats:alternatives> <jats:inline-graphic xmlns:xlink=\\\"http://www.w3.org/1999/xlink\\\" mime-subtype=\\\"png\\\" mimetype=\\\"image\\\" xlink:href=\\\"S1759078723001368_inline6.png\\\" /> <jats:tex-math>$39.3\\\\,\\\\mathrm d\\\\mathrm B\\\\mathrm i$</jats:tex-math> </jats:alternatives> </jats:inline-formula> of directivity and half-power beam widths of 0.95<jats:sup>∘</jats:sup> in transmit and receive direction. The suppression of clutter from unwanted targets deviating from antenna boresight more than 6<jats:sup>∘</jats:sup> is higher than <jats:inline-formula> <jats:alternatives> <jats:inline-graphic xmlns:xlink=\\\"http://www.w3.org/1999/xlink\\\" mime-subtype=\\\"png\\\" mimetype=\\\"image\\\" xlink:href=\\\"S1759078723001368_inline7.png\\\" /> <jats:tex-math>$24.6\\\\,\\\\mathrm d \\\\mathrm B$</jats:tex-math> </jats:alternatives> </jats:inline-formula> in E- and H-Plane.\",\"PeriodicalId\":49052,\"journal\":{\"name\":\"International Journal of Microwave and Wireless Technologies\",\"volume\":\"126 1\",\"pages\":\"\"},\"PeriodicalIF\":1.4000,\"publicationDate\":\"2023-12-06\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"International Journal of Microwave and Wireless Technologies\",\"FirstCategoryId\":\"94\",\"ListUrlMain\":\"https://doi.org/10.1017/s1759078723001368\",\"RegionNum\":4,\"RegionCategory\":\"计算机科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"ENGINEERING, ELECTRICAL & ELECTRONIC\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"International Journal of Microwave and Wireless Technologies","FirstCategoryId":"94","ListUrlMain":"https://doi.org/10.1017/s1759078723001368","RegionNum":4,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"ENGINEERING, ELECTRICAL & ELECTRONIC","Score":null,"Total":0}
A compact and fully integrated FMCW radar transceiver combined with a dielectric lens
Electronic measurement systems in the THz frequency range are often bulky and expensive devices. While some compact single-chip systems operating in the high millimeter-wave frequency range have recently been published, compact measurement systems in the low THz frequency range are still rare. The emergence of new silicon-germanium (SiGe) semiconductor technologies allow the integration of system components, like oscillators, frequency multipliers, frequency dividers, and antennas, operating in the low THz frequency range, into a compact monolithic microwave integrated circuits (MMIC), which contains most components to implement a low-cost and compact frequency-modulated continuous-wave-radar transceiver. This article presents a single transceiver solution containing all necessary components. It introduces a $0.48\,\mathrm{THz}$ radar transceiver MMIC with a tuning range of $43\,\mathrm{GHz}$ and an output power of up to $-9.4\,\mathrm{dBm}$ in the SG13G3 $130\,\mathrm{nm}$ SiGe technology by IHP. The MMIC is complemented by a dielectric lens antenna design consisting of polytetrafluoroethylene, providing up to $39.3\,\mathrm d\mathrm B\mathrm i$ of directivity and half-power beam widths of 0.95∘ in transmit and receive direction. The suppression of clutter from unwanted targets deviating from antenna boresight more than 6∘ is higher than $24.6\,\mathrm d \mathrm B$ in E- and H-Plane.
期刊介绍:
The prime objective of the International Journal of Microwave and Wireless Technologies is to enhance the communication between microwave engineers throughout the world. It is therefore interdisciplinary and application oriented, providing a platform for the microwave industry. Coverage includes: applied electromagnetic field theory (antennas, transmission lines and waveguides), components (passive structures and semiconductor device technologies), analogue and mixed-signal circuits, systems, optical-microwave interactions, electromagnetic compatibility, industrial applications, biological effects and medical applications.