{"title":"顶端配体、取代基和氧化态对Co(III)化合物电子结构的影响","authors":"Prof. Dr. Nicolás I. Neuman","doi":"10.1002/ejic.202300560","DOIUrl":null,"url":null,"abstract":"<p>Cobalt(III) corroles are the most commonly studied types of metallocorroles, yet the details of their electronic structure, ground spin states and place of redox events are not always straightforward. Corroles are redox active, potentially non-innocent ligands, and it has been found through various experimental and computational techniques, that the innocent or non-innocent behavior is modulated by the apical ligands bound to the cobalt center. In this work, we aim to analyze the effect of corrole substituents and number and type of apical ligands on the electronic structure of cobalt corroles through density functional and wavefunction theories, and to determine the relative energies between closed- and open-shell states. We further perform preliminary analyses on the place of electron abstraction upon oxidation and on the effect of the corrole and apical ligands on the cobalt ligand field splittings. We find that both ligand field and electron-donating or withdrawing effects determine the relative energies of open-shell and closed shell singlet states.</p>","PeriodicalId":38,"journal":{"name":"European Journal of Inorganic Chemistry","volume":"27 8","pages":""},"PeriodicalIF":2.0000,"publicationDate":"2023-11-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Effect of Apical Ligands, Substituents and Oxidation States on the Electronic Structure of Co(III) Corrolates\",\"authors\":\"Prof. Dr. Nicolás I. Neuman\",\"doi\":\"10.1002/ejic.202300560\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>Cobalt(III) corroles are the most commonly studied types of metallocorroles, yet the details of their electronic structure, ground spin states and place of redox events are not always straightforward. Corroles are redox active, potentially non-innocent ligands, and it has been found through various experimental and computational techniques, that the innocent or non-innocent behavior is modulated by the apical ligands bound to the cobalt center. In this work, we aim to analyze the effect of corrole substituents and number and type of apical ligands on the electronic structure of cobalt corroles through density functional and wavefunction theories, and to determine the relative energies between closed- and open-shell states. We further perform preliminary analyses on the place of electron abstraction upon oxidation and on the effect of the corrole and apical ligands on the cobalt ligand field splittings. We find that both ligand field and electron-donating or withdrawing effects determine the relative energies of open-shell and closed shell singlet states.</p>\",\"PeriodicalId\":38,\"journal\":{\"name\":\"European Journal of Inorganic Chemistry\",\"volume\":\"27 8\",\"pages\":\"\"},\"PeriodicalIF\":2.0000,\"publicationDate\":\"2023-11-28\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"European Journal of Inorganic Chemistry\",\"FirstCategoryId\":\"1\",\"ListUrlMain\":\"https://onlinelibrary.wiley.com/doi/10.1002/ejic.202300560\",\"RegionNum\":4,\"RegionCategory\":\"化学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"CHEMISTRY, INORGANIC & NUCLEAR\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"European Journal of Inorganic Chemistry","FirstCategoryId":"1","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1002/ejic.202300560","RegionNum":4,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"CHEMISTRY, INORGANIC & NUCLEAR","Score":null,"Total":0}
Effect of Apical Ligands, Substituents and Oxidation States on the Electronic Structure of Co(III) Corrolates
Cobalt(III) corroles are the most commonly studied types of metallocorroles, yet the details of their electronic structure, ground spin states and place of redox events are not always straightforward. Corroles are redox active, potentially non-innocent ligands, and it has been found through various experimental and computational techniques, that the innocent or non-innocent behavior is modulated by the apical ligands bound to the cobalt center. In this work, we aim to analyze the effect of corrole substituents and number and type of apical ligands on the electronic structure of cobalt corroles through density functional and wavefunction theories, and to determine the relative energies between closed- and open-shell states. We further perform preliminary analyses on the place of electron abstraction upon oxidation and on the effect of the corrole and apical ligands on the cobalt ligand field splittings. We find that both ligand field and electron-donating or withdrawing effects determine the relative energies of open-shell and closed shell singlet states.
期刊介绍:
The European Journal of Inorganic Chemistry (2019 ISI Impact Factor: 2.529) publishes Full Papers, Communications, and Minireviews from the entire spectrum of inorganic, organometallic, bioinorganic, and solid-state chemistry. It is published on behalf of Chemistry Europe, an association of 16 European chemical societies.
The following journals have been merged to form the two leading journals, European Journal of Inorganic Chemistry and European Journal of Organic Chemistry:
Chemische Berichte
Bulletin des Sociétés Chimiques Belges
Bulletin de la Société Chimique de France
Gazzetta Chimica Italiana
Recueil des Travaux Chimiques des Pays-Bas
Anales de Química
Chimika Chronika
Revista Portuguesa de Química
ACH—Models in Chemistry
Polish Journal of Chemistry
The European Journal of Inorganic Chemistry continues to keep you up-to-date with important inorganic chemistry research results.