{"title":"嗜热菌CRISPR/Cas基因组编辑系统:现状、相关挑战和未来展望","authors":"Yilin Le,Jianzhong Sun","doi":"10.1016/bs.aambs.2022.02.001","DOIUrl":null,"url":null,"abstract":"Thermophiles, offering an attractive and unique platform for a broad range of applications in biofuels and environment protections, have received a significant attention and growing interest from academy and industry. However, the exploration and exploitation of thermophilic organisms have been hampered by the lack of a powerful genome manipulation tool to improve production efficiency. At current, the clustered Regularly Interspaced Short Palindromic Repeat (CRISPR)/CRISPR associated (Cas) system has been successfully exploited as a competent, simplistic, and powerful tool for genome engineering both in eukaryotes and prokaryotes. Indeed, with the significant efforts made in recent years, some thermostable Cas9 proteins have been well identified and characterized and further, some thermostable Cas9-based editing tools have been successfully established in some representative obligate thermophiles. In this regard, we reviewed the current status and its progress in CRISPR/Cas-based genome editing system towards a variety of thermophilic organisms. Despite the potentials of these progresses, multiple factors/barriers still have to be overcome and optimized for improving its editing efficiency in thermophiles. Some insights into the roles of thermostable CRISPR/Cas technologies for the metabolic engineering of thermophiles as a thermophilic microbial cell factory were also fully analyzed and discussed.","PeriodicalId":7298,"journal":{"name":"Advances in applied microbiology","volume":"36 7","pages":"1-30"},"PeriodicalIF":0.0000,"publicationDate":"2022-02-25","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":"{\"title\":\"CRISPR/Cas genome editing systems in thermophiles: Current status, associated challenges, and future perspectives.\",\"authors\":\"Yilin Le,Jianzhong Sun\",\"doi\":\"10.1016/bs.aambs.2022.02.001\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Thermophiles, offering an attractive and unique platform for a broad range of applications in biofuels and environment protections, have received a significant attention and growing interest from academy and industry. However, the exploration and exploitation of thermophilic organisms have been hampered by the lack of a powerful genome manipulation tool to improve production efficiency. At current, the clustered Regularly Interspaced Short Palindromic Repeat (CRISPR)/CRISPR associated (Cas) system has been successfully exploited as a competent, simplistic, and powerful tool for genome engineering both in eukaryotes and prokaryotes. Indeed, with the significant efforts made in recent years, some thermostable Cas9 proteins have been well identified and characterized and further, some thermostable Cas9-based editing tools have been successfully established in some representative obligate thermophiles. In this regard, we reviewed the current status and its progress in CRISPR/Cas-based genome editing system towards a variety of thermophilic organisms. Despite the potentials of these progresses, multiple factors/barriers still have to be overcome and optimized for improving its editing efficiency in thermophiles. Some insights into the roles of thermostable CRISPR/Cas technologies for the metabolic engineering of thermophiles as a thermophilic microbial cell factory were also fully analyzed and discussed.\",\"PeriodicalId\":7298,\"journal\":{\"name\":\"Advances in applied microbiology\",\"volume\":\"36 7\",\"pages\":\"1-30\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2022-02-25\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"2\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Advances in applied microbiology\",\"FirstCategoryId\":\"99\",\"ListUrlMain\":\"https://doi.org/10.1016/bs.aambs.2022.02.001\",\"RegionNum\":2,\"RegionCategory\":\"生物学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"Immunology and Microbiology\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Advances in applied microbiology","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.1016/bs.aambs.2022.02.001","RegionNum":2,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"Immunology and Microbiology","Score":null,"Total":0}
CRISPR/Cas genome editing systems in thermophiles: Current status, associated challenges, and future perspectives.
Thermophiles, offering an attractive and unique platform for a broad range of applications in biofuels and environment protections, have received a significant attention and growing interest from academy and industry. However, the exploration and exploitation of thermophilic organisms have been hampered by the lack of a powerful genome manipulation tool to improve production efficiency. At current, the clustered Regularly Interspaced Short Palindromic Repeat (CRISPR)/CRISPR associated (Cas) system has been successfully exploited as a competent, simplistic, and powerful tool for genome engineering both in eukaryotes and prokaryotes. Indeed, with the significant efforts made in recent years, some thermostable Cas9 proteins have been well identified and characterized and further, some thermostable Cas9-based editing tools have been successfully established in some representative obligate thermophiles. In this regard, we reviewed the current status and its progress in CRISPR/Cas-based genome editing system towards a variety of thermophilic organisms. Despite the potentials of these progresses, multiple factors/barriers still have to be overcome and optimized for improving its editing efficiency in thermophiles. Some insights into the roles of thermostable CRISPR/Cas technologies for the metabolic engineering of thermophiles as a thermophilic microbial cell factory were also fully analyzed and discussed.
期刊介绍:
Advances in Applied Microbiology offers intensive reviews of the latest techniques and discoveries in this rapidly moving field. The editors are recognized experts and the format is comprehensive and instructive.
Published since 1959, Advances in Applied Microbiology continues to be one of the most widely read and authoritative review sources in microbiology.
Recent areas covered include bacterial diversity in the human gut, protozoan grazing of freshwater biofilms, metals in yeast fermentation processes and the interpretation of host-pathogen dialogue through microarrays.