{"title":"胶体促进释放多溴联苯醚在一个电子废物回收站点:来自未受干扰的土壤核心浸出实验的证据","authors":"Zebin Huo, Mengjun Xi, Lianrui Xu, Chuanjia Jiang, Wei Chen","doi":"10.1007/s11783-024-1781-x","DOIUrl":null,"url":null,"abstract":"<p>Polybrominated diphenyl ethers (PBDEs), a class of persistent organic pollutants, have been frequently detected in soil at e-waste recycling sites. However, the key factors controlling the transport of PBDEs from surface soil to the vadose zone and groundwater are unclear. Here, colloid-enhanced leaching of PBDEs from undisturbed soil cores collected at an e-waste recycling site in Tianjin, China, is reported. Spatially heterogeneous release of colloids and PBDEs was observed in all the tested soil cores under chemical and hydrodynamic perturbations, indicating the presence of preferential flow paths. Colloid concentration in the effluent significantly increased as ionic strength decreased (from 10 to 0.01 mmol/L), probably due to the stronger electrostatic repulsion between colloidal particles and the soil matrix at lower ionic strength. In contrast, colloid mobilization was not significantly affected by the changes in pH of the influent (from 4.0 to 10.0) and flow rate (from a Darcy velocity of 1.5 to 6.0 cm/h). The concentrations of 2,2′,3,3′,4,4′,5,5′,6,6′-decabromodiphenyl ether (BDE-209), the predominant PBDE congener at the site, detected in the leachate (ranging from 1.09 to 3.43 ng/L) were much lower than previously reported results from packed column leaching tests, and were positively correlated with colloid concentrations. This indicates that remobilization of colloids at e-waste recycling sites can promote the leaching and downward migration of PBDEs from surface soil. The findings highlight the potential risk of surface soil PBDE contamination to groundwater quality and call for further understanding of colloid-facilitated transport for predicting the fate of PBDEs at e-waste recycling sites.\n</p>","PeriodicalId":12720,"journal":{"name":"Frontiers of Environmental Science & Engineering","volume":"33 1","pages":""},"PeriodicalIF":6.1000,"publicationDate":"2023-09-25","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Colloid-facilitated release of polybrominated diphenyl ethers at an e-waste recycling site: evidence from undisturbed soil core leaching experiments\",\"authors\":\"Zebin Huo, Mengjun Xi, Lianrui Xu, Chuanjia Jiang, Wei Chen\",\"doi\":\"10.1007/s11783-024-1781-x\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>Polybrominated diphenyl ethers (PBDEs), a class of persistent organic pollutants, have been frequently detected in soil at e-waste recycling sites. However, the key factors controlling the transport of PBDEs from surface soil to the vadose zone and groundwater are unclear. Here, colloid-enhanced leaching of PBDEs from undisturbed soil cores collected at an e-waste recycling site in Tianjin, China, is reported. Spatially heterogeneous release of colloids and PBDEs was observed in all the tested soil cores under chemical and hydrodynamic perturbations, indicating the presence of preferential flow paths. Colloid concentration in the effluent significantly increased as ionic strength decreased (from 10 to 0.01 mmol/L), probably due to the stronger electrostatic repulsion between colloidal particles and the soil matrix at lower ionic strength. In contrast, colloid mobilization was not significantly affected by the changes in pH of the influent (from 4.0 to 10.0) and flow rate (from a Darcy velocity of 1.5 to 6.0 cm/h). The concentrations of 2,2′,3,3′,4,4′,5,5′,6,6′-decabromodiphenyl ether (BDE-209), the predominant PBDE congener at the site, detected in the leachate (ranging from 1.09 to 3.43 ng/L) were much lower than previously reported results from packed column leaching tests, and were positively correlated with colloid concentrations. This indicates that remobilization of colloids at e-waste recycling sites can promote the leaching and downward migration of PBDEs from surface soil. The findings highlight the potential risk of surface soil PBDE contamination to groundwater quality and call for further understanding of colloid-facilitated transport for predicting the fate of PBDEs at e-waste recycling sites.\\n</p>\",\"PeriodicalId\":12720,\"journal\":{\"name\":\"Frontiers of Environmental Science & Engineering\",\"volume\":\"33 1\",\"pages\":\"\"},\"PeriodicalIF\":6.1000,\"publicationDate\":\"2023-09-25\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Frontiers of Environmental Science & Engineering\",\"FirstCategoryId\":\"93\",\"ListUrlMain\":\"https://doi.org/10.1007/s11783-024-1781-x\",\"RegionNum\":2,\"RegionCategory\":\"环境科学与生态学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"ENGINEERING, ENVIRONMENTAL\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Frontiers of Environmental Science & Engineering","FirstCategoryId":"93","ListUrlMain":"https://doi.org/10.1007/s11783-024-1781-x","RegionNum":2,"RegionCategory":"环境科学与生态学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"ENGINEERING, ENVIRONMENTAL","Score":null,"Total":0}
Colloid-facilitated release of polybrominated diphenyl ethers at an e-waste recycling site: evidence from undisturbed soil core leaching experiments
Polybrominated diphenyl ethers (PBDEs), a class of persistent organic pollutants, have been frequently detected in soil at e-waste recycling sites. However, the key factors controlling the transport of PBDEs from surface soil to the vadose zone and groundwater are unclear. Here, colloid-enhanced leaching of PBDEs from undisturbed soil cores collected at an e-waste recycling site in Tianjin, China, is reported. Spatially heterogeneous release of colloids and PBDEs was observed in all the tested soil cores under chemical and hydrodynamic perturbations, indicating the presence of preferential flow paths. Colloid concentration in the effluent significantly increased as ionic strength decreased (from 10 to 0.01 mmol/L), probably due to the stronger electrostatic repulsion between colloidal particles and the soil matrix at lower ionic strength. In contrast, colloid mobilization was not significantly affected by the changes in pH of the influent (from 4.0 to 10.0) and flow rate (from a Darcy velocity of 1.5 to 6.0 cm/h). The concentrations of 2,2′,3,3′,4,4′,5,5′,6,6′-decabromodiphenyl ether (BDE-209), the predominant PBDE congener at the site, detected in the leachate (ranging from 1.09 to 3.43 ng/L) were much lower than previously reported results from packed column leaching tests, and were positively correlated with colloid concentrations. This indicates that remobilization of colloids at e-waste recycling sites can promote the leaching and downward migration of PBDEs from surface soil. The findings highlight the potential risk of surface soil PBDE contamination to groundwater quality and call for further understanding of colloid-facilitated transport for predicting the fate of PBDEs at e-waste recycling sites.
期刊介绍:
Frontiers of Environmental Science & Engineering (FESE) is an international journal for researchers interested in a wide range of environmental disciplines. The journal''s aim is to advance and disseminate knowledge in all main branches of environmental science & engineering. The journal emphasizes papers in developing fields, as well as papers showing the interaction between environmental disciplines and other disciplines.
FESE is a bi-monthly journal. Its peer-reviewed contents consist of a broad blend of reviews, research papers, policy analyses, short communications, and opinions. Nonscheduled “special issue” and "hot topic", including a review article followed by a couple of related research articles, are organized to publish novel contributions and breaking results on all aspects of environmental field.