Wiley Helm, Shifa Zhong, Elliot Reid, Thomas Igou, Yongsheng Chen
{"title":"梯度增强辅助机器学习数据驱动的游离氯残留预测模型的开发","authors":"Wiley Helm, Shifa Zhong, Elliot Reid, Thomas Igou, Yongsheng Chen","doi":"10.1007/s11783-024-1777-6","DOIUrl":null,"url":null,"abstract":"<p>Chlorine-based disinfection is ubiquitous in conventional drinking water treatment (DWT) and serves to mitigate threats of acute microbial disease caused by pathogens that may be present in source water. An important index of disinfection efficiency is the free chlorine residual (FCR), a regulated disinfection parameter in the US that indirectly measures disinfectant power for prevention of microbial recontamination during DWT and distribution. This work demonstrates how machine learning (ML) can be implemented to improve FCR forecasting when supplied with water quality data from a real, full-scale chlorine disinfection system in Georgia, USA. More precisely, a gradient-boosting ML method (CatBoost) was developed from a full year of DWT plant-generated chlorine disinfection data, including water quality parameters (e.g., temperature, turbidity, pH) and operational process data (e.g., flowrates), to predict FCR. Four gradient-boosting models were implemented, with the highest performance achieving a coefficient of determination, <i>R</i><sup>2</sup>, of 0.937. Values that provide explanations using Shapley’s additive method were used to interpret the model’s results, uncovering that standard DWT operating parameters, although non-intuitive and theoretically non-causal, vastly improved prediction performance. These results provide a base case for data-driven DWT disinfection supervision and suggest process monitoring methods to provide better information to plant operators for implementation of safe chlorine dosing to maintain optimum FCR.</p>","PeriodicalId":12720,"journal":{"name":"Frontiers of Environmental Science & Engineering","volume":"67 12","pages":""},"PeriodicalIF":6.1000,"publicationDate":"2023-09-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Development of gradient boosting-assisted machine learning data-driven model for free chlorine residual prediction\",\"authors\":\"Wiley Helm, Shifa Zhong, Elliot Reid, Thomas Igou, Yongsheng Chen\",\"doi\":\"10.1007/s11783-024-1777-6\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>Chlorine-based disinfection is ubiquitous in conventional drinking water treatment (DWT) and serves to mitigate threats of acute microbial disease caused by pathogens that may be present in source water. An important index of disinfection efficiency is the free chlorine residual (FCR), a regulated disinfection parameter in the US that indirectly measures disinfectant power for prevention of microbial recontamination during DWT and distribution. This work demonstrates how machine learning (ML) can be implemented to improve FCR forecasting when supplied with water quality data from a real, full-scale chlorine disinfection system in Georgia, USA. More precisely, a gradient-boosting ML method (CatBoost) was developed from a full year of DWT plant-generated chlorine disinfection data, including water quality parameters (e.g., temperature, turbidity, pH) and operational process data (e.g., flowrates), to predict FCR. Four gradient-boosting models were implemented, with the highest performance achieving a coefficient of determination, <i>R</i><sup>2</sup>, of 0.937. Values that provide explanations using Shapley’s additive method were used to interpret the model’s results, uncovering that standard DWT operating parameters, although non-intuitive and theoretically non-causal, vastly improved prediction performance. These results provide a base case for data-driven DWT disinfection supervision and suggest process monitoring methods to provide better information to plant operators for implementation of safe chlorine dosing to maintain optimum FCR.</p>\",\"PeriodicalId\":12720,\"journal\":{\"name\":\"Frontiers of Environmental Science & Engineering\",\"volume\":\"67 12\",\"pages\":\"\"},\"PeriodicalIF\":6.1000,\"publicationDate\":\"2023-09-28\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Frontiers of Environmental Science & Engineering\",\"FirstCategoryId\":\"93\",\"ListUrlMain\":\"https://doi.org/10.1007/s11783-024-1777-6\",\"RegionNum\":2,\"RegionCategory\":\"环境科学与生态学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"ENGINEERING, ENVIRONMENTAL\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Frontiers of Environmental Science & Engineering","FirstCategoryId":"93","ListUrlMain":"https://doi.org/10.1007/s11783-024-1777-6","RegionNum":2,"RegionCategory":"环境科学与生态学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"ENGINEERING, ENVIRONMENTAL","Score":null,"Total":0}
Development of gradient boosting-assisted machine learning data-driven model for free chlorine residual prediction
Chlorine-based disinfection is ubiquitous in conventional drinking water treatment (DWT) and serves to mitigate threats of acute microbial disease caused by pathogens that may be present in source water. An important index of disinfection efficiency is the free chlorine residual (FCR), a regulated disinfection parameter in the US that indirectly measures disinfectant power for prevention of microbial recontamination during DWT and distribution. This work demonstrates how machine learning (ML) can be implemented to improve FCR forecasting when supplied with water quality data from a real, full-scale chlorine disinfection system in Georgia, USA. More precisely, a gradient-boosting ML method (CatBoost) was developed from a full year of DWT plant-generated chlorine disinfection data, including water quality parameters (e.g., temperature, turbidity, pH) and operational process data (e.g., flowrates), to predict FCR. Four gradient-boosting models were implemented, with the highest performance achieving a coefficient of determination, R2, of 0.937. Values that provide explanations using Shapley’s additive method were used to interpret the model’s results, uncovering that standard DWT operating parameters, although non-intuitive and theoretically non-causal, vastly improved prediction performance. These results provide a base case for data-driven DWT disinfection supervision and suggest process monitoring methods to provide better information to plant operators for implementation of safe chlorine dosing to maintain optimum FCR.
期刊介绍:
Frontiers of Environmental Science & Engineering (FESE) is an international journal for researchers interested in a wide range of environmental disciplines. The journal''s aim is to advance and disseminate knowledge in all main branches of environmental science & engineering. The journal emphasizes papers in developing fields, as well as papers showing the interaction between environmental disciplines and other disciplines.
FESE is a bi-monthly journal. Its peer-reviewed contents consist of a broad blend of reviews, research papers, policy analyses, short communications, and opinions. Nonscheduled “special issue” and "hot topic", including a review article followed by a couple of related research articles, are organized to publish novel contributions and breaking results on all aspects of environmental field.