Wladimir Padilha da Silva , Graciela V Lopes , Tassiana Ramires , Natalie R Kleinubing
{"title":"酚类物质能否减轻食源性病原体的抗微生物药物耐药性?","authors":"Wladimir Padilha da Silva , Graciela V Lopes , Tassiana Ramires , Natalie R Kleinubing","doi":"10.1016/j.cofs.2023.101107","DOIUrl":null,"url":null,"abstract":"<div><p><span><span>The emergence of antimicrobial-resistant bacteria represents an increasing threat to public health, making it necessary to search for alternatives to control pathogenic microorganisms. Phenolics, found in leaves, stems, roots, flowers, and fruits can potentially be used as antimicrobials in foods. The most extensively studied compounds are eugenol, carvacrol, </span>thymol, </span>resveratrol<span><span><span>, cinnamaldehyde, and pyrogallol. They have demonstrated antimicrobial properties against </span>foodborne pathogens<span> through different mechanisms of action. Phenolics may synergize with antimicrobials, expanding the spectrum of action of the antimicrobial or even reversing antimicrobial resistance. Furthermore, they can modulate genes associated with bacterial resistance and virulence, with scientific evidence that </span></span>phenolic compounds<span> can help mitigate antimicrobial resistance in foodborne pathogens. This review describes the antibacterial potential of phenolic compounds against foodborne pathogens, their synergistic action with clinical antimicrobial agents, and their capacity to modulate the expression of bacterial genes, aiming to answer whether these compounds can mitigate antimicrobial resistance in foodborne pathogens.</span></span></p></div>","PeriodicalId":54291,"journal":{"name":"Current Opinion in Food Science","volume":null,"pages":null},"PeriodicalIF":8.9000,"publicationDate":"2023-11-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"May phenolics mitigate the antimicrobial resistance in foodborne pathogens?\",\"authors\":\"Wladimir Padilha da Silva , Graciela V Lopes , Tassiana Ramires , Natalie R Kleinubing\",\"doi\":\"10.1016/j.cofs.2023.101107\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p><span><span>The emergence of antimicrobial-resistant bacteria represents an increasing threat to public health, making it necessary to search for alternatives to control pathogenic microorganisms. Phenolics, found in leaves, stems, roots, flowers, and fruits can potentially be used as antimicrobials in foods. The most extensively studied compounds are eugenol, carvacrol, </span>thymol, </span>resveratrol<span><span><span>, cinnamaldehyde, and pyrogallol. They have demonstrated antimicrobial properties against </span>foodborne pathogens<span> through different mechanisms of action. Phenolics may synergize with antimicrobials, expanding the spectrum of action of the antimicrobial or even reversing antimicrobial resistance. Furthermore, they can modulate genes associated with bacterial resistance and virulence, with scientific evidence that </span></span>phenolic compounds<span> can help mitigate antimicrobial resistance in foodborne pathogens. This review describes the antibacterial potential of phenolic compounds against foodborne pathogens, their synergistic action with clinical antimicrobial agents, and their capacity to modulate the expression of bacterial genes, aiming to answer whether these compounds can mitigate antimicrobial resistance in foodborne pathogens.</span></span></p></div>\",\"PeriodicalId\":54291,\"journal\":{\"name\":\"Current Opinion in Food Science\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":8.9000,\"publicationDate\":\"2023-11-23\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Current Opinion in Food Science\",\"FirstCategoryId\":\"97\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S2214799323001224\",\"RegionNum\":1,\"RegionCategory\":\"农林科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"FOOD SCIENCE & TECHNOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Current Opinion in Food Science","FirstCategoryId":"97","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2214799323001224","RegionNum":1,"RegionCategory":"农林科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"FOOD SCIENCE & TECHNOLOGY","Score":null,"Total":0}
May phenolics mitigate the antimicrobial resistance in foodborne pathogens?
The emergence of antimicrobial-resistant bacteria represents an increasing threat to public health, making it necessary to search for alternatives to control pathogenic microorganisms. Phenolics, found in leaves, stems, roots, flowers, and fruits can potentially be used as antimicrobials in foods. The most extensively studied compounds are eugenol, carvacrol, thymol, resveratrol, cinnamaldehyde, and pyrogallol. They have demonstrated antimicrobial properties against foodborne pathogens through different mechanisms of action. Phenolics may synergize with antimicrobials, expanding the spectrum of action of the antimicrobial or even reversing antimicrobial resistance. Furthermore, they can modulate genes associated with bacterial resistance and virulence, with scientific evidence that phenolic compounds can help mitigate antimicrobial resistance in foodborne pathogens. This review describes the antibacterial potential of phenolic compounds against foodborne pathogens, their synergistic action with clinical antimicrobial agents, and their capacity to modulate the expression of bacterial genes, aiming to answer whether these compounds can mitigate antimicrobial resistance in foodborne pathogens.
期刊介绍:
Current Opinion in Food Science specifically provides expert views on current advances in food science in a clear and readable format. It also evaluates the most noteworthy papers from original publications, annotated by experts.
Key Features:
Expert Views on Current Advances: Clear and readable insights from experts in the field regarding current advances in food science.
Evaluation of Noteworthy Papers: Annotated evaluations of the most interesting papers from the extensive array of original publications.
Themed Sections: The subject of food science is divided into themed sections, each reviewed once a year.