{"title":"多线性PageRank计算的外推拆分方法","authors":"Maryam Boubekraoui","doi":"10.1016/j.apnum.2023.11.019","DOIUrl":null,"url":null,"abstract":"<div><div>Multilinear PageRank is a variant of the well-known PageRank model. With this model, web page ranking can be more accurate and efficient by taking into account higher-order connections between pages. The higher-order power method is commonly employed for computing the multilinear PageRank vector, since it is a natural extension of the traditional power method used in the PageRank algorithm. However, this method may not be efficient when the hyperlink<span> tensor becomes large or the damping factor value fails to meet the necessary conditions for convergence. In this work, we propose a novel approach to efficiently computing the multilinear PageRank vector using tensor splitting and vector extrapolation methods.</span></div></div>","PeriodicalId":8199,"journal":{"name":"Applied Numerical Mathematics","volume":"208 ","pages":"Pages 92-103"},"PeriodicalIF":2.2000,"publicationDate":"2025-02-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Extrapolated splitting methods for multilinear PageRank computations\",\"authors\":\"Maryam Boubekraoui\",\"doi\":\"10.1016/j.apnum.2023.11.019\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>Multilinear PageRank is a variant of the well-known PageRank model. With this model, web page ranking can be more accurate and efficient by taking into account higher-order connections between pages. The higher-order power method is commonly employed for computing the multilinear PageRank vector, since it is a natural extension of the traditional power method used in the PageRank algorithm. However, this method may not be efficient when the hyperlink<span> tensor becomes large or the damping factor value fails to meet the necessary conditions for convergence. In this work, we propose a novel approach to efficiently computing the multilinear PageRank vector using tensor splitting and vector extrapolation methods.</span></div></div>\",\"PeriodicalId\":8199,\"journal\":{\"name\":\"Applied Numerical Mathematics\",\"volume\":\"208 \",\"pages\":\"Pages 92-103\"},\"PeriodicalIF\":2.2000,\"publicationDate\":\"2025-02-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Applied Numerical Mathematics\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S0168927423002982\",\"RegionNum\":2,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"MATHEMATICS, APPLIED\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Applied Numerical Mathematics","FirstCategoryId":"100","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0168927423002982","RegionNum":2,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATHEMATICS, APPLIED","Score":null,"Total":0}
Extrapolated splitting methods for multilinear PageRank computations
Multilinear PageRank is a variant of the well-known PageRank model. With this model, web page ranking can be more accurate and efficient by taking into account higher-order connections between pages. The higher-order power method is commonly employed for computing the multilinear PageRank vector, since it is a natural extension of the traditional power method used in the PageRank algorithm. However, this method may not be efficient when the hyperlink tensor becomes large or the damping factor value fails to meet the necessary conditions for convergence. In this work, we propose a novel approach to efficiently computing the multilinear PageRank vector using tensor splitting and vector extrapolation methods.
期刊介绍:
The purpose of the journal is to provide a forum for the publication of high quality research and tutorial papers in computational mathematics. In addition to the traditional issues and problems in numerical analysis, the journal also publishes papers describing relevant applications in such fields as physics, fluid dynamics, engineering and other branches of applied science with a computational mathematics component. The journal strives to be flexible in the type of papers it publishes and their format. Equally desirable are:
(i) Full papers, which should be complete and relatively self-contained original contributions with an introduction that can be understood by the broad computational mathematics community. Both rigorous and heuristic styles are acceptable. Of particular interest are papers about new areas of research, in which other than strictly mathematical arguments may be important in establishing a basis for further developments.
(ii) Tutorial review papers, covering some of the important issues in Numerical Mathematics, Scientific Computing and their Applications. The journal will occasionally publish contributions which are larger than the usual format for regular papers.
(iii) Short notes, which present specific new results and techniques in a brief communication.