北太平洋高压与北美西海岸上升风在现在和未来气候中的关系

IF 4.8 2区 地球科学 Q1 METEOROLOGY & ATMOSPHERIC SCIENCES
Hui Ding, Michael A. Alexander, Mingfang Ting
{"title":"北太平洋高压与北美西海岸上升风在现在和未来气候中的关系","authors":"Hui Ding, Michael A. Alexander, Mingfang Ting","doi":"10.1175/jcli-d-23-0238.1","DOIUrl":null,"url":null,"abstract":"Abstract The wind-driven circulation is an important driver of upwelling in the California Current System, a key factor in maintaining a productive ecosystem. In summer, the North Pacific high (NPH) dominates the atmospheric circulation, including the nearshore winds. The impact of the NPH on the surface winds along the North American west coast during summer is examined using the ECMWF Reanalysis v5 (ERA5) and the Community Earth System Model version 1 (CESM1) large ensemble of simulations. The strength, latitude, and longitude of the sea level pressure (SLP) and subsidence at 500 hPa are used to assess the NPH and its variability. While both the surface high pressure cell and subsidence are related to the interannual variability of the surface winds over the North Pacific, the strength of subsidence has a much larger effect on the coastal winds than the variability in SLP. Based on the mean of the 40 CESM simulations, future changes in upwelling also more strongly coincide with changes in subsidence than in SLP. Subsidence and southward upwelling-favorable winds increase off the Canadian coast, with the reverse occurring off the U.S. West Coast, by the end of the twenty-first century. In particular, the intermember correlation between the changes in the nearshore surface winds and the 500-hPa pressure vertical velocity reaches 0.75 and 0.87 in the southern and northern portions of the northeast Pacific, respectively. The effect of the subsidence on upwelling winds in the future is confirmed by the CESM2 large ensemble.","PeriodicalId":15472,"journal":{"name":"Journal of Climate","volume":"509 35","pages":""},"PeriodicalIF":4.8000,"publicationDate":"2023-11-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Revisiting the Relationship between the North Pacific High and Upwelling Winds along the West Coast of North America in the Present and Future Climate\",\"authors\":\"Hui Ding, Michael A. Alexander, Mingfang Ting\",\"doi\":\"10.1175/jcli-d-23-0238.1\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Abstract The wind-driven circulation is an important driver of upwelling in the California Current System, a key factor in maintaining a productive ecosystem. In summer, the North Pacific high (NPH) dominates the atmospheric circulation, including the nearshore winds. The impact of the NPH on the surface winds along the North American west coast during summer is examined using the ECMWF Reanalysis v5 (ERA5) and the Community Earth System Model version 1 (CESM1) large ensemble of simulations. The strength, latitude, and longitude of the sea level pressure (SLP) and subsidence at 500 hPa are used to assess the NPH and its variability. While both the surface high pressure cell and subsidence are related to the interannual variability of the surface winds over the North Pacific, the strength of subsidence has a much larger effect on the coastal winds than the variability in SLP. Based on the mean of the 40 CESM simulations, future changes in upwelling also more strongly coincide with changes in subsidence than in SLP. Subsidence and southward upwelling-favorable winds increase off the Canadian coast, with the reverse occurring off the U.S. West Coast, by the end of the twenty-first century. In particular, the intermember correlation between the changes in the nearshore surface winds and the 500-hPa pressure vertical velocity reaches 0.75 and 0.87 in the southern and northern portions of the northeast Pacific, respectively. The effect of the subsidence on upwelling winds in the future is confirmed by the CESM2 large ensemble.\",\"PeriodicalId\":15472,\"journal\":{\"name\":\"Journal of Climate\",\"volume\":\"509 35\",\"pages\":\"\"},\"PeriodicalIF\":4.8000,\"publicationDate\":\"2023-11-10\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Climate\",\"FirstCategoryId\":\"89\",\"ListUrlMain\":\"https://doi.org/10.1175/jcli-d-23-0238.1\",\"RegionNum\":2,\"RegionCategory\":\"地球科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"METEOROLOGY & ATMOSPHERIC SCIENCES\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Climate","FirstCategoryId":"89","ListUrlMain":"https://doi.org/10.1175/jcli-d-23-0238.1","RegionNum":2,"RegionCategory":"地球科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"METEOROLOGY & ATMOSPHERIC SCIENCES","Score":null,"Total":0}
引用次数: 0

摘要

风驱动环流是加利福尼亚洋流系统上升流的重要驱动力,是维持高产生态系统的关键因素。在夏季,北太平洋高压(NPH)主导了大气环流,包括近岸风。利用ECMWF再分析v5 (ERA5)和社区地球系统模式第1版(CESM1)大集合模拟分析了夏季NPH对北美西海岸地面风的影响。利用500 hPa海面压力(SLP)和下沉的强度、纬度和经度来评估NPH及其变率。地面高压单体和沉降都与北太平洋地面风的年际变化有关,但沉降强度对沿海风的影响远大于SLP的年际变化。根据40次CESM模拟的平均值,未来上升流的变化也比SLP的变化更强烈地符合沉降的变化。到21世纪末,下沉风和有利于向南上升的风在加拿大海岸增加,而在美国西海岸则相反。特别是,东北太平洋南部和北部近岸地面风变化与500 hpa气压垂直速度的段间相关系数分别达到0.75和0.87。沉降对未来升流风的影响得到了CESM2大集合的证实。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Revisiting the Relationship between the North Pacific High and Upwelling Winds along the West Coast of North America in the Present and Future Climate
Abstract The wind-driven circulation is an important driver of upwelling in the California Current System, a key factor in maintaining a productive ecosystem. In summer, the North Pacific high (NPH) dominates the atmospheric circulation, including the nearshore winds. The impact of the NPH on the surface winds along the North American west coast during summer is examined using the ECMWF Reanalysis v5 (ERA5) and the Community Earth System Model version 1 (CESM1) large ensemble of simulations. The strength, latitude, and longitude of the sea level pressure (SLP) and subsidence at 500 hPa are used to assess the NPH and its variability. While both the surface high pressure cell and subsidence are related to the interannual variability of the surface winds over the North Pacific, the strength of subsidence has a much larger effect on the coastal winds than the variability in SLP. Based on the mean of the 40 CESM simulations, future changes in upwelling also more strongly coincide with changes in subsidence than in SLP. Subsidence and southward upwelling-favorable winds increase off the Canadian coast, with the reverse occurring off the U.S. West Coast, by the end of the twenty-first century. In particular, the intermember correlation between the changes in the nearshore surface winds and the 500-hPa pressure vertical velocity reaches 0.75 and 0.87 in the southern and northern portions of the northeast Pacific, respectively. The effect of the subsidence on upwelling winds in the future is confirmed by the CESM2 large ensemble.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Journal of Climate
Journal of Climate 地学-气象与大气科学
CiteScore
9.30
自引率
14.30%
发文量
490
审稿时长
7.5 months
期刊介绍: The Journal of Climate (JCLI) (ISSN: 0894-8755; eISSN: 1520-0442) publishes research that advances basic understanding of the dynamics and physics of the climate system on large spatial scales, including variability of the atmosphere, oceans, land surface, and cryosphere; past, present, and projected future changes in the climate system; and climate simulation and prediction.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信