{"title":"具有非参数高斯尺度混合误差的半参数混合线性回归","authors":"Sangkon Oh, Byungtae Seo","doi":"10.1007/s11634-023-00570-6","DOIUrl":null,"url":null,"abstract":"<div><p>In finite mixture of regression models, normal assumption for the errors of each regression component is typically adopted. Though this common assumption is theoretically and computationally convenient, it often produces inefficient and undesirable estimates which undermine the applicability of the model particularly in the presence of outliers. To reduce these defects, we propose to use nonparametric Gaussian scale mixture distributions for component error distributions. By this means, we can lessen the risk of misspecification and obtain robust estimators. In this paper, we study the identifiability of the proposed model and develop a feasible estimating algorithm. Numerical studies including simulation studies and real data analysis to demonstrate the performance of the proposed method are also presented.</p></div>","PeriodicalId":49270,"journal":{"name":"Advances in Data Analysis and Classification","volume":"18 1","pages":"5 - 31"},"PeriodicalIF":1.4000,"publicationDate":"2023-11-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Semiparametric mixture of linear regressions with nonparametric Gaussian scale mixture errors\",\"authors\":\"Sangkon Oh, Byungtae Seo\",\"doi\":\"10.1007/s11634-023-00570-6\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>In finite mixture of regression models, normal assumption for the errors of each regression component is typically adopted. Though this common assumption is theoretically and computationally convenient, it often produces inefficient and undesirable estimates which undermine the applicability of the model particularly in the presence of outliers. To reduce these defects, we propose to use nonparametric Gaussian scale mixture distributions for component error distributions. By this means, we can lessen the risk of misspecification and obtain robust estimators. In this paper, we study the identifiability of the proposed model and develop a feasible estimating algorithm. Numerical studies including simulation studies and real data analysis to demonstrate the performance of the proposed method are also presented.</p></div>\",\"PeriodicalId\":49270,\"journal\":{\"name\":\"Advances in Data Analysis and Classification\",\"volume\":\"18 1\",\"pages\":\"5 - 31\"},\"PeriodicalIF\":1.4000,\"publicationDate\":\"2023-11-23\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Advances in Data Analysis and Classification\",\"FirstCategoryId\":\"94\",\"ListUrlMain\":\"https://link.springer.com/article/10.1007/s11634-023-00570-6\",\"RegionNum\":4,\"RegionCategory\":\"计算机科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"STATISTICS & PROBABILITY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Advances in Data Analysis and Classification","FirstCategoryId":"94","ListUrlMain":"https://link.springer.com/article/10.1007/s11634-023-00570-6","RegionNum":4,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"STATISTICS & PROBABILITY","Score":null,"Total":0}
Semiparametric mixture of linear regressions with nonparametric Gaussian scale mixture errors
In finite mixture of regression models, normal assumption for the errors of each regression component is typically adopted. Though this common assumption is theoretically and computationally convenient, it often produces inefficient and undesirable estimates which undermine the applicability of the model particularly in the presence of outliers. To reduce these defects, we propose to use nonparametric Gaussian scale mixture distributions for component error distributions. By this means, we can lessen the risk of misspecification and obtain robust estimators. In this paper, we study the identifiability of the proposed model and develop a feasible estimating algorithm. Numerical studies including simulation studies and real data analysis to demonstrate the performance of the proposed method are also presented.
期刊介绍:
The international journal Advances in Data Analysis and Classification (ADAC) is designed as a forum for high standard publications on research and applications concerning the extraction of knowable aspects from many types of data. It publishes articles on such topics as structural, quantitative, or statistical approaches for the analysis of data; advances in classification, clustering, and pattern recognition methods; strategies for modeling complex data and mining large data sets; methods for the extraction of knowledge from data, and applications of advanced methods in specific domains of practice. Articles illustrate how new domain-specific knowledge can be made available from data by skillful use of data analysis methods. The journal also publishes survey papers that outline, and illuminate the basic ideas and techniques of special approaches.