{"title":"网络微积分运行时应用的可配置硬件体系结构","authors":"Xiao Hu, Zhonghai Lu","doi":"10.1007/s10766-021-00700-7","DOIUrl":null,"url":null,"abstract":"<p>Network Calculus has been a foundational theory for analyzing and ensuring Quality-of-Service (QoS) in a variety of networks including Networks on Chip (NoCs). To fulfill dynamic QoS requirements of applications, runtime application of network calculus is essential. However, the primitive operations in network calculus such as arrival curve, min-plus convolution and min-plus deconvolution are very time consuming when calculated in software because of the large volume and long latency of computation. For the first time, we propose a configurable hardware architecture to enable runtime application of network calculus. It employs a unified pipeline that can be dynamically configured to efficiently calculate the arrival curve, min-plus convolution, and min-plus deconvolution at runtime. We have implemented and synthesized this hardware architecture on a Xilinx FPGA platform to quantify its performance and resource consumption. Furthermore, we have built a prototype NoC system incorporating this hardware for dynamic flow regulation to effectively achieve QoS at runtime.</p>","PeriodicalId":14313,"journal":{"name":"International Journal of Parallel Programming","volume":"12 1","pages":""},"PeriodicalIF":0.9000,"publicationDate":"2021-04-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"A Configurable Hardware Architecture for Runtime Application of Network Calculus\",\"authors\":\"Xiao Hu, Zhonghai Lu\",\"doi\":\"10.1007/s10766-021-00700-7\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>Network Calculus has been a foundational theory for analyzing and ensuring Quality-of-Service (QoS) in a variety of networks including Networks on Chip (NoCs). To fulfill dynamic QoS requirements of applications, runtime application of network calculus is essential. However, the primitive operations in network calculus such as arrival curve, min-plus convolution and min-plus deconvolution are very time consuming when calculated in software because of the large volume and long latency of computation. For the first time, we propose a configurable hardware architecture to enable runtime application of network calculus. It employs a unified pipeline that can be dynamically configured to efficiently calculate the arrival curve, min-plus convolution, and min-plus deconvolution at runtime. We have implemented and synthesized this hardware architecture on a Xilinx FPGA platform to quantify its performance and resource consumption. Furthermore, we have built a prototype NoC system incorporating this hardware for dynamic flow regulation to effectively achieve QoS at runtime.</p>\",\"PeriodicalId\":14313,\"journal\":{\"name\":\"International Journal of Parallel Programming\",\"volume\":\"12 1\",\"pages\":\"\"},\"PeriodicalIF\":0.9000,\"publicationDate\":\"2021-04-02\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"International Journal of Parallel Programming\",\"FirstCategoryId\":\"94\",\"ListUrlMain\":\"https://doi.org/10.1007/s10766-021-00700-7\",\"RegionNum\":4,\"RegionCategory\":\"计算机科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"COMPUTER SCIENCE, THEORY & METHODS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"International Journal of Parallel Programming","FirstCategoryId":"94","ListUrlMain":"https://doi.org/10.1007/s10766-021-00700-7","RegionNum":4,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"COMPUTER SCIENCE, THEORY & METHODS","Score":null,"Total":0}
A Configurable Hardware Architecture for Runtime Application of Network Calculus
Network Calculus has been a foundational theory for analyzing and ensuring Quality-of-Service (QoS) in a variety of networks including Networks on Chip (NoCs). To fulfill dynamic QoS requirements of applications, runtime application of network calculus is essential. However, the primitive operations in network calculus such as arrival curve, min-plus convolution and min-plus deconvolution are very time consuming when calculated in software because of the large volume and long latency of computation. For the first time, we propose a configurable hardware architecture to enable runtime application of network calculus. It employs a unified pipeline that can be dynamically configured to efficiently calculate the arrival curve, min-plus convolution, and min-plus deconvolution at runtime. We have implemented and synthesized this hardware architecture on a Xilinx FPGA platform to quantify its performance and resource consumption. Furthermore, we have built a prototype NoC system incorporating this hardware for dynamic flow regulation to effectively achieve QoS at runtime.
期刊介绍:
International Journal of Parallel Programming is a forum for the publication of peer-reviewed, high-quality original papers in the computer and information sciences, focusing specifically on programming aspects of parallel computing systems. Such systems are characterized by the coexistence over time of multiple coordinated activities. The journal publishes both original research and survey papers. Fields of interest include: linguistic foundations, conceptual frameworks, high-level languages, evaluation methods, implementation techniques, programming support systems, pragmatic considerations, architectural characteristics, software engineering aspects, advances in parallel algorithms, performance studies, and application studies.