自由元分组上的顺序

Pub Date : 2023-11-29 DOI:10.1515/jgth-2022-0203
Wenhao Wang
{"title":"自由元分组上的顺序","authors":"Wenhao Wang","doi":"10.1515/jgth-2022-0203","DOIUrl":null,"url":null,"abstract":"A bi-order on a group 𝐺 is a total, bi-multiplication invariant order. A subset 𝑆 in an ordered group <jats:inline-formula> <jats:alternatives> <m:math xmlns:m=\"http://www.w3.org/1998/Math/MathML\"> <m:mrow> <m:mo stretchy=\"false\">(</m:mo> <m:mi>G</m:mi> <m:mo>,</m:mo> <m:mo lspace=\"0em\" rspace=\"0em\">⩽</m:mo> <m:mo stretchy=\"false\">)</m:mo> </m:mrow> </m:math> <jats:inline-graphic xmlns:xlink=\"http://www.w3.org/1999/xlink\" xlink:href=\"graphic/j_jgth-2022-0203_ineq_0001.png\" /> <jats:tex-math>(G,\\leqslant)</jats:tex-math> </jats:alternatives> </jats:inline-formula> is convex if, for all <jats:inline-formula> <jats:alternatives> <m:math xmlns:m=\"http://www.w3.org/1998/Math/MathML\"> <m:mrow> <m:mi>f</m:mi> <m:mo>⩽</m:mo> <m:mi>g</m:mi> </m:mrow> </m:math> <jats:inline-graphic xmlns:xlink=\"http://www.w3.org/1999/xlink\" xlink:href=\"graphic/j_jgth-2022-0203_ineq_0002.png\" /> <jats:tex-math>f\\leqslant g</jats:tex-math> </jats:alternatives> </jats:inline-formula> in 𝑆, every element <jats:inline-formula> <jats:alternatives> <m:math xmlns:m=\"http://www.w3.org/1998/Math/MathML\"> <m:mrow> <m:mi>h</m:mi> <m:mo>∈</m:mo> <m:mi>G</m:mi> </m:mrow> </m:math> <jats:inline-graphic xmlns:xlink=\"http://www.w3.org/1999/xlink\" xlink:href=\"graphic/j_jgth-2022-0203_ineq_0003.png\" /> <jats:tex-math>h\\in G</jats:tex-math> </jats:alternatives> </jats:inline-formula> satisfying <jats:inline-formula> <jats:alternatives> <m:math xmlns:m=\"http://www.w3.org/1998/Math/MathML\"> <m:mrow> <m:mi>f</m:mi> <m:mo>⩽</m:mo> <m:mi>h</m:mi> <m:mo>⩽</m:mo> <m:mi>g</m:mi> </m:mrow> </m:math> <jats:inline-graphic xmlns:xlink=\"http://www.w3.org/1999/xlink\" xlink:href=\"graphic/j_jgth-2022-0203_ineq_0004.png\" /> <jats:tex-math>f\\leqslant h\\leqslant g</jats:tex-math> </jats:alternatives> </jats:inline-formula> belongs to 𝑆. In this paper, we show that the derived subgroup of the free metabelian group of rank 2 is convex with respect to any bi-order. Moreover, we study the convex hull of the derived subgroup of a free metabelian group of higher rank. As an application, we prove that the space of bi-orders of a non-abelian free metabelian group of finite rank is homeomorphic to the Cantor set. In addition, we show that no bi-order for these groups can be recognised by a regular language.","PeriodicalId":0,"journal":{"name":"","volume":null,"pages":null},"PeriodicalIF":0.0,"publicationDate":"2023-11-29","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Orders on free metabelian groups\",\"authors\":\"Wenhao Wang\",\"doi\":\"10.1515/jgth-2022-0203\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"A bi-order on a group 𝐺 is a total, bi-multiplication invariant order. A subset 𝑆 in an ordered group <jats:inline-formula> <jats:alternatives> <m:math xmlns:m=\\\"http://www.w3.org/1998/Math/MathML\\\"> <m:mrow> <m:mo stretchy=\\\"false\\\">(</m:mo> <m:mi>G</m:mi> <m:mo>,</m:mo> <m:mo lspace=\\\"0em\\\" rspace=\\\"0em\\\">⩽</m:mo> <m:mo stretchy=\\\"false\\\">)</m:mo> </m:mrow> </m:math> <jats:inline-graphic xmlns:xlink=\\\"http://www.w3.org/1999/xlink\\\" xlink:href=\\\"graphic/j_jgth-2022-0203_ineq_0001.png\\\" /> <jats:tex-math>(G,\\\\leqslant)</jats:tex-math> </jats:alternatives> </jats:inline-formula> is convex if, for all <jats:inline-formula> <jats:alternatives> <m:math xmlns:m=\\\"http://www.w3.org/1998/Math/MathML\\\"> <m:mrow> <m:mi>f</m:mi> <m:mo>⩽</m:mo> <m:mi>g</m:mi> </m:mrow> </m:math> <jats:inline-graphic xmlns:xlink=\\\"http://www.w3.org/1999/xlink\\\" xlink:href=\\\"graphic/j_jgth-2022-0203_ineq_0002.png\\\" /> <jats:tex-math>f\\\\leqslant g</jats:tex-math> </jats:alternatives> </jats:inline-formula> in 𝑆, every element <jats:inline-formula> <jats:alternatives> <m:math xmlns:m=\\\"http://www.w3.org/1998/Math/MathML\\\"> <m:mrow> <m:mi>h</m:mi> <m:mo>∈</m:mo> <m:mi>G</m:mi> </m:mrow> </m:math> <jats:inline-graphic xmlns:xlink=\\\"http://www.w3.org/1999/xlink\\\" xlink:href=\\\"graphic/j_jgth-2022-0203_ineq_0003.png\\\" /> <jats:tex-math>h\\\\in G</jats:tex-math> </jats:alternatives> </jats:inline-formula> satisfying <jats:inline-formula> <jats:alternatives> <m:math xmlns:m=\\\"http://www.w3.org/1998/Math/MathML\\\"> <m:mrow> <m:mi>f</m:mi> <m:mo>⩽</m:mo> <m:mi>h</m:mi> <m:mo>⩽</m:mo> <m:mi>g</m:mi> </m:mrow> </m:math> <jats:inline-graphic xmlns:xlink=\\\"http://www.w3.org/1999/xlink\\\" xlink:href=\\\"graphic/j_jgth-2022-0203_ineq_0004.png\\\" /> <jats:tex-math>f\\\\leqslant h\\\\leqslant g</jats:tex-math> </jats:alternatives> </jats:inline-formula> belongs to 𝑆. In this paper, we show that the derived subgroup of the free metabelian group of rank 2 is convex with respect to any bi-order. Moreover, we study the convex hull of the derived subgroup of a free metabelian group of higher rank. As an application, we prove that the space of bi-orders of a non-abelian free metabelian group of finite rank is homeomorphic to the Cantor set. In addition, we show that no bi-order for these groups can be recognised by a regular language.\",\"PeriodicalId\":0,\"journal\":{\"name\":\"\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":0.0,\"publicationDate\":\"2023-11-29\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://doi.org/10.1515/jgth-2022-0203\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.1515/jgth-2022-0203","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

群𝐺上的双阶是一个总的双乘法不变阶。一个有序群(G,≤)(G, \leqslant)中的子集𝑆是凸的,如果对于𝑆中的所有f≤G≤\leqslant G,每个元素h∈G h \in G满足f≤h≤G≤\leqslant h \leqslant G属于𝑆。在本文中,我们证明了秩为2的自由亚丫群的派生子群对于任意双阶是凸的。此外,我们还研究了一类高秩自由亚元群的派生子群的凸包。作为一个应用,证明了有限秩非阿贝尔自由亚贝尔群的双阶空间与康托尔集是同胚的。此外,我们证明了这些组的双序不能被常规语言识别。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
分享
查看原文
Orders on free metabelian groups
A bi-order on a group 𝐺 is a total, bi-multiplication invariant order. A subset 𝑆 in an ordered group ( G , ) (G,\leqslant) is convex if, for all f g f\leqslant g in 𝑆, every element h G h\in G satisfying f h g f\leqslant h\leqslant g belongs to 𝑆. In this paper, we show that the derived subgroup of the free metabelian group of rank 2 is convex with respect to any bi-order. Moreover, we study the convex hull of the derived subgroup of a free metabelian group of higher rank. As an application, we prove that the space of bi-orders of a non-abelian free metabelian group of finite rank is homeomorphic to the Cantor set. In addition, we show that no bi-order for these groups can be recognised by a regular language.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信