分级的精确序列

Pub Date : 2023-11-29 DOI:10.1515/jgth-2023-0040
Andrei Marcus, Virgilius-Aurelian Minuță
{"title":"分级的精确序列","authors":"Andrei Marcus, Virgilius-Aurelian Minuță","doi":"10.1515/jgth-2023-0040","DOIUrl":null,"url":null,"abstract":"To a strongly 𝐺-graded algebra 𝐴 with 1-component 𝐵, we associate the group <jats:inline-formula> <jats:alternatives> <m:math xmlns:m=\"http://www.w3.org/1998/Math/MathML\"> <m:mrow> <m:msup> <m:mi>Picent</m:mi> <m:mi>gr</m:mi> </m:msup> <m:mo>⁢</m:mo> <m:mrow> <m:mo stretchy=\"false\">(</m:mo> <m:mi>A</m:mi> <m:mo stretchy=\"false\">)</m:mo> </m:mrow> </m:mrow> </m:math> <jats:inline-graphic xmlns:xlink=\"http://www.w3.org/1999/xlink\" xlink:href=\"graphic/j_jgth-2023-0040_ineq_0001.png\" /> <jats:tex-math>\\mathrm{Picent}^{\\mathrm{gr}}(A)</jats:tex-math> </jats:alternatives> </jats:inline-formula> of isomorphism classes of invertible 𝐺-graded <jats:inline-formula> <jats:alternatives> <m:math xmlns:m=\"http://www.w3.org/1998/Math/MathML\"> <m:mrow> <m:mo stretchy=\"false\">(</m:mo> <m:mi>A</m:mi> <m:mo>,</m:mo> <m:mi>A</m:mi> <m:mo stretchy=\"false\">)</m:mo> </m:mrow> </m:math> <jats:inline-graphic xmlns:xlink=\"http://www.w3.org/1999/xlink\" xlink:href=\"graphic/j_jgth-2023-0040_ineq_0002.png\" /> <jats:tex-math>(A,A)</jats:tex-math> </jats:alternatives> </jats:inline-formula>-bimodules over the centralizer of 𝐵 in 𝐴. Our main result is a <jats:inline-formula> <jats:alternatives> <m:math xmlns:m=\"http://www.w3.org/1998/Math/MathML\"> <m:mi>Picent</m:mi> </m:math> <jats:inline-graphic xmlns:xlink=\"http://www.w3.org/1999/xlink\" xlink:href=\"graphic/j_jgth-2023-0040_ineq_0003.png\" /> <jats:tex-math>\\mathrm{Picent}</jats:tex-math> </jats:alternatives> </jats:inline-formula> version of the Beattie–del Río exact sequence, involving Dade’s group <jats:inline-formula> <jats:alternatives> <m:math xmlns:m=\"http://www.w3.org/1998/Math/MathML\"> <m:mrow> <m:mi>G</m:mi> <m:mo>⁢</m:mo> <m:mrow> <m:mo stretchy=\"false\">[</m:mo> <m:mi>B</m:mi> <m:mo stretchy=\"false\">]</m:mo> </m:mrow> </m:mrow> </m:math> <jats:inline-graphic xmlns:xlink=\"http://www.w3.org/1999/xlink\" xlink:href=\"graphic/j_jgth-2023-0040_ineq_0004.png\" /> <jats:tex-math>G[B]</jats:tex-math> </jats:alternatives> </jats:inline-formula>, which relates <jats:inline-formula> <jats:alternatives> <m:math xmlns:m=\"http://www.w3.org/1998/Math/MathML\"> <m:mrow> <m:msup> <m:mi>Picent</m:mi> <m:mi>gr</m:mi> </m:msup> <m:mo>⁢</m:mo> <m:mrow> <m:mo stretchy=\"false\">(</m:mo> <m:mi>A</m:mi> <m:mo stretchy=\"false\">)</m:mo> </m:mrow> </m:mrow> </m:math> <jats:inline-graphic xmlns:xlink=\"http://www.w3.org/1999/xlink\" xlink:href=\"graphic/j_jgth-2023-0040_ineq_0001.png\" /> <jats:tex-math>\\mathrm{Picent}^{\\mathrm{gr}}(A)</jats:tex-math> </jats:alternatives> </jats:inline-formula>, <jats:inline-formula> <jats:alternatives> <m:math xmlns:m=\"http://www.w3.org/1998/Math/MathML\"> <m:mrow> <m:mi>Picent</m:mi> <m:mo>⁢</m:mo> <m:mrow> <m:mo stretchy=\"false\">(</m:mo> <m:mi>B</m:mi> <m:mo stretchy=\"false\">)</m:mo> </m:mrow> </m:mrow> </m:math> <jats:inline-graphic xmlns:xlink=\"http://www.w3.org/1999/xlink\" xlink:href=\"graphic/j_jgth-2023-0040_ineq_0006.png\" /> <jats:tex-math>\\mathrm{Picent}(B)</jats:tex-math> </jats:alternatives> </jats:inline-formula>, and group cohomology.","PeriodicalId":0,"journal":{"name":"","volume":null,"pages":null},"PeriodicalIF":0.0,"publicationDate":"2023-11-29","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"An exact sequence for the graded Picent\",\"authors\":\"Andrei Marcus, Virgilius-Aurelian Minuță\",\"doi\":\"10.1515/jgth-2023-0040\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"To a strongly 𝐺-graded algebra 𝐴 with 1-component 𝐵, we associate the group <jats:inline-formula> <jats:alternatives> <m:math xmlns:m=\\\"http://www.w3.org/1998/Math/MathML\\\"> <m:mrow> <m:msup> <m:mi>Picent</m:mi> <m:mi>gr</m:mi> </m:msup> <m:mo>⁢</m:mo> <m:mrow> <m:mo stretchy=\\\"false\\\">(</m:mo> <m:mi>A</m:mi> <m:mo stretchy=\\\"false\\\">)</m:mo> </m:mrow> </m:mrow> </m:math> <jats:inline-graphic xmlns:xlink=\\\"http://www.w3.org/1999/xlink\\\" xlink:href=\\\"graphic/j_jgth-2023-0040_ineq_0001.png\\\" /> <jats:tex-math>\\\\mathrm{Picent}^{\\\\mathrm{gr}}(A)</jats:tex-math> </jats:alternatives> </jats:inline-formula> of isomorphism classes of invertible 𝐺-graded <jats:inline-formula> <jats:alternatives> <m:math xmlns:m=\\\"http://www.w3.org/1998/Math/MathML\\\"> <m:mrow> <m:mo stretchy=\\\"false\\\">(</m:mo> <m:mi>A</m:mi> <m:mo>,</m:mo> <m:mi>A</m:mi> <m:mo stretchy=\\\"false\\\">)</m:mo> </m:mrow> </m:math> <jats:inline-graphic xmlns:xlink=\\\"http://www.w3.org/1999/xlink\\\" xlink:href=\\\"graphic/j_jgth-2023-0040_ineq_0002.png\\\" /> <jats:tex-math>(A,A)</jats:tex-math> </jats:alternatives> </jats:inline-formula>-bimodules over the centralizer of 𝐵 in 𝐴. Our main result is a <jats:inline-formula> <jats:alternatives> <m:math xmlns:m=\\\"http://www.w3.org/1998/Math/MathML\\\"> <m:mi>Picent</m:mi> </m:math> <jats:inline-graphic xmlns:xlink=\\\"http://www.w3.org/1999/xlink\\\" xlink:href=\\\"graphic/j_jgth-2023-0040_ineq_0003.png\\\" /> <jats:tex-math>\\\\mathrm{Picent}</jats:tex-math> </jats:alternatives> </jats:inline-formula> version of the Beattie–del Río exact sequence, involving Dade’s group <jats:inline-formula> <jats:alternatives> <m:math xmlns:m=\\\"http://www.w3.org/1998/Math/MathML\\\"> <m:mrow> <m:mi>G</m:mi> <m:mo>⁢</m:mo> <m:mrow> <m:mo stretchy=\\\"false\\\">[</m:mo> <m:mi>B</m:mi> <m:mo stretchy=\\\"false\\\">]</m:mo> </m:mrow> </m:mrow> </m:math> <jats:inline-graphic xmlns:xlink=\\\"http://www.w3.org/1999/xlink\\\" xlink:href=\\\"graphic/j_jgth-2023-0040_ineq_0004.png\\\" /> <jats:tex-math>G[B]</jats:tex-math> </jats:alternatives> </jats:inline-formula>, which relates <jats:inline-formula> <jats:alternatives> <m:math xmlns:m=\\\"http://www.w3.org/1998/Math/MathML\\\"> <m:mrow> <m:msup> <m:mi>Picent</m:mi> <m:mi>gr</m:mi> </m:msup> <m:mo>⁢</m:mo> <m:mrow> <m:mo stretchy=\\\"false\\\">(</m:mo> <m:mi>A</m:mi> <m:mo stretchy=\\\"false\\\">)</m:mo> </m:mrow> </m:mrow> </m:math> <jats:inline-graphic xmlns:xlink=\\\"http://www.w3.org/1999/xlink\\\" xlink:href=\\\"graphic/j_jgth-2023-0040_ineq_0001.png\\\" /> <jats:tex-math>\\\\mathrm{Picent}^{\\\\mathrm{gr}}(A)</jats:tex-math> </jats:alternatives> </jats:inline-formula>, <jats:inline-formula> <jats:alternatives> <m:math xmlns:m=\\\"http://www.w3.org/1998/Math/MathML\\\"> <m:mrow> <m:mi>Picent</m:mi> <m:mo>⁢</m:mo> <m:mrow> <m:mo stretchy=\\\"false\\\">(</m:mo> <m:mi>B</m:mi> <m:mo stretchy=\\\"false\\\">)</m:mo> </m:mrow> </m:mrow> </m:math> <jats:inline-graphic xmlns:xlink=\\\"http://www.w3.org/1999/xlink\\\" xlink:href=\\\"graphic/j_jgth-2023-0040_ineq_0006.png\\\" /> <jats:tex-math>\\\\mathrm{Picent}(B)</jats:tex-math> </jats:alternatives> </jats:inline-formula>, and group cohomology.\",\"PeriodicalId\":0,\"journal\":{\"name\":\"\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":0.0,\"publicationDate\":\"2023-11-29\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://doi.org/10.1515/jgth-2023-0040\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.1515/jgth-2023-0040","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

对于一个具有1组分变量的强𝐺-graded代数变量变量,我们将可逆的𝐺-graded (a, a) (a, a) -双模的同构类的群Picent gr²(a) \ mathm {Picent}^{\ mathm {gr}}(a)关联到变量的中心化算子上。我们的主要结果是Beattie-del Río精确序列的一个Picent \ mathm {Picent}版本,涉及Dade的群G≠[B] G[B],它涉及到Picent gr (a) \ mathm {Picent}^{\ mathm {gr}}(a), Picent≠(B) \ mathm {Picent}(B)和群上同调。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
分享
查看原文
An exact sequence for the graded Picent
To a strongly 𝐺-graded algebra 𝐴 with 1-component 𝐵, we associate the group Picent gr ( A ) \mathrm{Picent}^{\mathrm{gr}}(A) of isomorphism classes of invertible 𝐺-graded ( A , A ) (A,A) -bimodules over the centralizer of 𝐵 in 𝐴. Our main result is a Picent \mathrm{Picent} version of the Beattie–del Río exact sequence, involving Dade’s group G [ B ] G[B] , which relates Picent gr ( A ) \mathrm{Picent}^{\mathrm{gr}}(A) , Picent ( B ) \mathrm{Picent}(B) , and group cohomology.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信