Ammu E. Antony, Sathasivam Kalithasan, Viji Z. Thomas
{"title":"Schur乘法器、Bogomolov乘法器和最小发生器数在等斜变型下的不变性","authors":"Ammu E. Antony, Sathasivam Kalithasan, Viji Z. Thomas","doi":"10.1515/jgth-2023-0066","DOIUrl":null,"url":null,"abstract":"We introduce the 𝑞-Bogomolov multiplier as a generalization of the Bogomolov multiplier, and we prove that it is invariant under 𝑞-isoclinism. We prove that the 𝑞-Schur multiplier is invariant under 𝑞-exterior isoclinism, and as an easy consequence, we prove that the Schur multiplier is invariant under exterior isoclinism. We also prove that if 𝐺 and 𝐻 are 𝑝-groups with <jats:inline-formula> <jats:alternatives> <m:math xmlns:m=\"http://www.w3.org/1998/Math/MathML\"> <m:mrow> <m:mrow> <m:mrow> <m:mi>G</m:mi> <m:mo>/</m:mo> <m:msup> <m:mi>Z</m:mi> <m:mo>∧</m:mo> </m:msup> </m:mrow> <m:mo></m:mo> <m:mrow> <m:mo stretchy=\"false\">(</m:mo> <m:mi>G</m:mi> <m:mo stretchy=\"false\">)</m:mo> </m:mrow> </m:mrow> <m:mo>≅</m:mo> <m:mrow> <m:mrow> <m:mi>H</m:mi> <m:mo>/</m:mo> <m:msup> <m:mi>Z</m:mi> <m:mo>∧</m:mo> </m:msup> </m:mrow> <m:mo></m:mo> <m:mrow> <m:mo stretchy=\"false\">(</m:mo> <m:mi>H</m:mi> <m:mo stretchy=\"false\">)</m:mo> </m:mrow> </m:mrow> </m:mrow> </m:math> <jats:inline-graphic xmlns:xlink=\"http://www.w3.org/1999/xlink\" xlink:href=\"graphic/j_jgth-2023-0066_ineq_0001.png\" /> <jats:tex-math>G/Z^{\\wedge}(G)\\cong H/Z^{\\wedge}(H)</jats:tex-math> </jats:alternatives> </jats:inline-formula>, then the cardinalities of the minimal number of generators of 𝐺 and 𝐻 are the same. Moreover, we prove some structural results about non-abelian 𝑞-tensor square of groups.","PeriodicalId":0,"journal":{"name":"","volume":null,"pages":null},"PeriodicalIF":0.0,"publicationDate":"2023-11-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Invariance of the Schur multiplier, the Bogomolov multiplier and the minimal number of generators under a variant of isoclinism\",\"authors\":\"Ammu E. Antony, Sathasivam Kalithasan, Viji Z. Thomas\",\"doi\":\"10.1515/jgth-2023-0066\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"We introduce the 𝑞-Bogomolov multiplier as a generalization of the Bogomolov multiplier, and we prove that it is invariant under 𝑞-isoclinism. We prove that the 𝑞-Schur multiplier is invariant under 𝑞-exterior isoclinism, and as an easy consequence, we prove that the Schur multiplier is invariant under exterior isoclinism. We also prove that if 𝐺 and 𝐻 are 𝑝-groups with <jats:inline-formula> <jats:alternatives> <m:math xmlns:m=\\\"http://www.w3.org/1998/Math/MathML\\\"> <m:mrow> <m:mrow> <m:mrow> <m:mi>G</m:mi> <m:mo>/</m:mo> <m:msup> <m:mi>Z</m:mi> <m:mo>∧</m:mo> </m:msup> </m:mrow> <m:mo></m:mo> <m:mrow> <m:mo stretchy=\\\"false\\\">(</m:mo> <m:mi>G</m:mi> <m:mo stretchy=\\\"false\\\">)</m:mo> </m:mrow> </m:mrow> <m:mo>≅</m:mo> <m:mrow> <m:mrow> <m:mi>H</m:mi> <m:mo>/</m:mo> <m:msup> <m:mi>Z</m:mi> <m:mo>∧</m:mo> </m:msup> </m:mrow> <m:mo></m:mo> <m:mrow> <m:mo stretchy=\\\"false\\\">(</m:mo> <m:mi>H</m:mi> <m:mo stretchy=\\\"false\\\">)</m:mo> </m:mrow> </m:mrow> </m:mrow> </m:math> <jats:inline-graphic xmlns:xlink=\\\"http://www.w3.org/1999/xlink\\\" xlink:href=\\\"graphic/j_jgth-2023-0066_ineq_0001.png\\\" /> <jats:tex-math>G/Z^{\\\\wedge}(G)\\\\cong H/Z^{\\\\wedge}(H)</jats:tex-math> </jats:alternatives> </jats:inline-formula>, then the cardinalities of the minimal number of generators of 𝐺 and 𝐻 are the same. Moreover, we prove some structural results about non-abelian 𝑞-tensor square of groups.\",\"PeriodicalId\":0,\"journal\":{\"name\":\"\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":0.0,\"publicationDate\":\"2023-11-27\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://doi.org/10.1515/jgth-2023-0066\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.1515/jgth-2023-0066","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0
摘要
引入了𝑞-Bogomolov乘子作为Bogomolov乘子的推广,并证明了它在𝑞-isoclinism下是不变的。我们证明了𝑞-Schur乘子在𝑞-exterior等斜下是不变的,作为一个简单的结果,我们证明了Schur乘子在外等斜下是不变的。我们还证明了如果𝐺和𝐻是𝑝-groups with G/Z∧∧(G) = H/Z∧∧(H) G/Z^{\wedge}(G)\cong H/Z^{\wedge}(H),则𝐺和𝐻的最小生成器数的基数是相同的。此外,我们还证明了群的非阿贝尔𝑞-tensor平方的一些结构结果。
Invariance of the Schur multiplier, the Bogomolov multiplier and the minimal number of generators under a variant of isoclinism
We introduce the 𝑞-Bogomolov multiplier as a generalization of the Bogomolov multiplier, and we prove that it is invariant under 𝑞-isoclinism. We prove that the 𝑞-Schur multiplier is invariant under 𝑞-exterior isoclinism, and as an easy consequence, we prove that the Schur multiplier is invariant under exterior isoclinism. We also prove that if 𝐺 and 𝐻 are 𝑝-groups with G/Z∧(G)≅H/Z∧(H)G/Z^{\wedge}(G)\cong H/Z^{\wedge}(H), then the cardinalities of the minimal number of generators of 𝐺 and 𝐻 are the same. Moreover, we prove some structural results about non-abelian 𝑞-tensor square of groups.