{"title":"基于各向异性磁阻传感器的钢材健康监测装置的研制","authors":"Georgia Stamou, Spyridon Angelopoulos, Evangelos Hristoforou","doi":"10.3233/jae-230137","DOIUrl":null,"url":null,"abstract":"This paper presents a portable device based on an Anisotropic Magnetoresistance (AMR) sensor for Steel Health Monitoring. The system operates by detecting magnetic anomalies in ferromagnetic materials caused by strain, corrosion, etc. This sensor can have various applications in the transportation,building, and aerospace fields for safety and maintenance monitoring of ferromagnetic materials. In this work, a low-cost device, that combines a high-sensitivity AMR sensor, a microcontroller, and supporting electronics has been designed and implemented. This sensor allows the contactless measurement of the magnetic flux density along three axes, when placed above the material under test, while the microcontroller and the required electronics enable real-time analysis and monitoring of measurements. In order to house and protect the sensor under various circumstances, a 3D-printed enclosure has also been created. This device can be used along with rehabilitation techniques for treatment of defective areas of an under-test material. Its versatility allows it to be employed in a variety of testing conditions for both single-point and scanning mode monitoring. The device’s portability, ease of use and applicability to on-site measurements make it accessible to a wide range of users, requiring only a personal computer to display the measurements. Finally, measurements are presented to prove the device’s accuracy for steel health monitoring.","PeriodicalId":1,"journal":{"name":"Accounts of Chemical Research","volume":null,"pages":null},"PeriodicalIF":16.4000,"publicationDate":"2023-11-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Development of a steel health monitoring device based on anisotropic magnetoresistance sensors\",\"authors\":\"Georgia Stamou, Spyridon Angelopoulos, Evangelos Hristoforou\",\"doi\":\"10.3233/jae-230137\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"This paper presents a portable device based on an Anisotropic Magnetoresistance (AMR) sensor for Steel Health Monitoring. The system operates by detecting magnetic anomalies in ferromagnetic materials caused by strain, corrosion, etc. This sensor can have various applications in the transportation,building, and aerospace fields for safety and maintenance monitoring of ferromagnetic materials. In this work, a low-cost device, that combines a high-sensitivity AMR sensor, a microcontroller, and supporting electronics has been designed and implemented. This sensor allows the contactless measurement of the magnetic flux density along three axes, when placed above the material under test, while the microcontroller and the required electronics enable real-time analysis and monitoring of measurements. In order to house and protect the sensor under various circumstances, a 3D-printed enclosure has also been created. This device can be used along with rehabilitation techniques for treatment of defective areas of an under-test material. Its versatility allows it to be employed in a variety of testing conditions for both single-point and scanning mode monitoring. The device’s portability, ease of use and applicability to on-site measurements make it accessible to a wide range of users, requiring only a personal computer to display the measurements. Finally, measurements are presented to prove the device’s accuracy for steel health monitoring.\",\"PeriodicalId\":1,\"journal\":{\"name\":\"Accounts of Chemical Research\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":16.4000,\"publicationDate\":\"2023-11-23\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Accounts of Chemical Research\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://doi.org/10.3233/jae-230137\",\"RegionNum\":1,\"RegionCategory\":\"化学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"CHEMISTRY, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Accounts of Chemical Research","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.3233/jae-230137","RegionNum":1,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
Development of a steel health monitoring device based on anisotropic magnetoresistance sensors
This paper presents a portable device based on an Anisotropic Magnetoresistance (AMR) sensor for Steel Health Monitoring. The system operates by detecting magnetic anomalies in ferromagnetic materials caused by strain, corrosion, etc. This sensor can have various applications in the transportation,building, and aerospace fields for safety and maintenance monitoring of ferromagnetic materials. In this work, a low-cost device, that combines a high-sensitivity AMR sensor, a microcontroller, and supporting electronics has been designed and implemented. This sensor allows the contactless measurement of the magnetic flux density along three axes, when placed above the material under test, while the microcontroller and the required electronics enable real-time analysis and monitoring of measurements. In order to house and protect the sensor under various circumstances, a 3D-printed enclosure has also been created. This device can be used along with rehabilitation techniques for treatment of defective areas of an under-test material. Its versatility allows it to be employed in a variety of testing conditions for both single-point and scanning mode monitoring. The device’s portability, ease of use and applicability to on-site measurements make it accessible to a wide range of users, requiring only a personal computer to display the measurements. Finally, measurements are presented to prove the device’s accuracy for steel health monitoring.
期刊介绍:
Accounts of Chemical Research presents short, concise and critical articles offering easy-to-read overviews of basic research and applications in all areas of chemistry and biochemistry. These short reviews focus on research from the author’s own laboratory and are designed to teach the reader about a research project. In addition, Accounts of Chemical Research publishes commentaries that give an informed opinion on a current research problem. Special Issues online are devoted to a single topic of unusual activity and significance.
Accounts of Chemical Research replaces the traditional article abstract with an article "Conspectus." These entries synopsize the research affording the reader a closer look at the content and significance of an article. Through this provision of a more detailed description of the article contents, the Conspectus enhances the article's discoverability by search engines and the exposure for the research.