{"title":"水稻贮藏蛋白含量的QTL检测及遗传效应验证。","authors":"Mufid Alam, YingYing Wang, Jianxian Chen, Guangming Lou, Hanyuan Yang, Yin Zhou, Saurav Luitel, Gonghao Jiang, Yuqing He","doi":"10.1007/s11032-023-01436-7","DOIUrl":null,"url":null,"abstract":"<p><p>Rice grain quality is a multifarious attribute mainly governed by multiple nutritional factors. Grain protein is the central component of rice grain nutrition dominantly affecting eating-cooking qualities. Grain protein content is quantitatively influenced by its protein fractions. Genetic quantification of five protein fractions-albumins, globulins, prolamins, glutelin, and grain protein content-were evaluated by exploiting two BC<sub>3</sub>F<sub>2</sub> mapping populations, derived from Kongyu131/TKM9 (population-I) and Kongyu131/Bg94-1 (population-II), which were grown in a single environment. Correlation studies among protein fractions and grain protein content were thoroughly investigated. A genetic linkage map was developed by using 146 single sequence repeat (SSR) markers in population-I and 167 markers in population-II. In total, 40 QTLs were delineated for five traits in both populations. Approximately 22 QTLs were dissected in population-I, derived from Kongyu131/TKM9, seven QTLs for albumin content, four QTLs for globulin content, three QTLs for prolamin content, four QTLs for glutelin content, and four QTLs for grain protein content. In total, 18 QTLs were detected in population-II, derived from Kongyu131/Bg94-1, five QTLs for albumin content, three QTLs for globulin content, four QTLs for prolamin content, two QTLs for glutelin content, and four QTLs for grain protein content. Three QTLs, <i>qAlb7.1</i>, <i>Alb7.2</i>, and <i>qGPC7.2,</i> derived from population-II (Kongyu131/Bg94-1) for albumin and grain protein content were successfully validated in the near isogenic line (NIL) populations. The localized chromosomal locus of the validated QTLs could be helpful for fine mapping via map-based cloning to discover underlying candidate genes. The functional insights of the underlying candidate gene would furnish novel perceptivity for the foundation of rice grain protein content and trigger the development of nutritionally important rice cultivars by combining marker-assisted selection (MAS) breeding.</p><p><strong>Supplementary information: </strong>The online version contains supplementary material available at 10.1007/s11032-023-01436-7.</p>","PeriodicalId":18769,"journal":{"name":"Molecular Breeding","volume":"43 12","pages":"89"},"PeriodicalIF":2.6000,"publicationDate":"2023-12-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10695898/pdf/","citationCount":"0","resultStr":"{\"title\":\"QTL detection for rice grain storage protein content and genetic effect verifications.\",\"authors\":\"Mufid Alam, YingYing Wang, Jianxian Chen, Guangming Lou, Hanyuan Yang, Yin Zhou, Saurav Luitel, Gonghao Jiang, Yuqing He\",\"doi\":\"10.1007/s11032-023-01436-7\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Rice grain quality is a multifarious attribute mainly governed by multiple nutritional factors. Grain protein is the central component of rice grain nutrition dominantly affecting eating-cooking qualities. Grain protein content is quantitatively influenced by its protein fractions. Genetic quantification of five protein fractions-albumins, globulins, prolamins, glutelin, and grain protein content-were evaluated by exploiting two BC<sub>3</sub>F<sub>2</sub> mapping populations, derived from Kongyu131/TKM9 (population-I) and Kongyu131/Bg94-1 (population-II), which were grown in a single environment. Correlation studies among protein fractions and grain protein content were thoroughly investigated. A genetic linkage map was developed by using 146 single sequence repeat (SSR) markers in population-I and 167 markers in population-II. In total, 40 QTLs were delineated for five traits in both populations. Approximately 22 QTLs were dissected in population-I, derived from Kongyu131/TKM9, seven QTLs for albumin content, four QTLs for globulin content, three QTLs for prolamin content, four QTLs for glutelin content, and four QTLs for grain protein content. In total, 18 QTLs were detected in population-II, derived from Kongyu131/Bg94-1, five QTLs for albumin content, three QTLs for globulin content, four QTLs for prolamin content, two QTLs for glutelin content, and four QTLs for grain protein content. Three QTLs, <i>qAlb7.1</i>, <i>Alb7.2</i>, and <i>qGPC7.2,</i> derived from population-II (Kongyu131/Bg94-1) for albumin and grain protein content were successfully validated in the near isogenic line (NIL) populations. The localized chromosomal locus of the validated QTLs could be helpful for fine mapping via map-based cloning to discover underlying candidate genes. The functional insights of the underlying candidate gene would furnish novel perceptivity for the foundation of rice grain protein content and trigger the development of nutritionally important rice cultivars by combining marker-assisted selection (MAS) breeding.</p><p><strong>Supplementary information: </strong>The online version contains supplementary material available at 10.1007/s11032-023-01436-7.</p>\",\"PeriodicalId\":18769,\"journal\":{\"name\":\"Molecular Breeding\",\"volume\":\"43 12\",\"pages\":\"89\"},\"PeriodicalIF\":2.6000,\"publicationDate\":\"2023-12-04\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10695898/pdf/\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Molecular Breeding\",\"FirstCategoryId\":\"97\",\"ListUrlMain\":\"https://doi.org/10.1007/s11032-023-01436-7\",\"RegionNum\":3,\"RegionCategory\":\"农林科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"2023/12/1 0:00:00\",\"PubModel\":\"eCollection\",\"JCR\":\"Q1\",\"JCRName\":\"AGRONOMY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Molecular Breeding","FirstCategoryId":"97","ListUrlMain":"https://doi.org/10.1007/s11032-023-01436-7","RegionNum":3,"RegionCategory":"农林科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2023/12/1 0:00:00","PubModel":"eCollection","JCR":"Q1","JCRName":"AGRONOMY","Score":null,"Total":0}
QTL detection for rice grain storage protein content and genetic effect verifications.
Rice grain quality is a multifarious attribute mainly governed by multiple nutritional factors. Grain protein is the central component of rice grain nutrition dominantly affecting eating-cooking qualities. Grain protein content is quantitatively influenced by its protein fractions. Genetic quantification of five protein fractions-albumins, globulins, prolamins, glutelin, and grain protein content-were evaluated by exploiting two BC3F2 mapping populations, derived from Kongyu131/TKM9 (population-I) and Kongyu131/Bg94-1 (population-II), which were grown in a single environment. Correlation studies among protein fractions and grain protein content were thoroughly investigated. A genetic linkage map was developed by using 146 single sequence repeat (SSR) markers in population-I and 167 markers in population-II. In total, 40 QTLs were delineated for five traits in both populations. Approximately 22 QTLs were dissected in population-I, derived from Kongyu131/TKM9, seven QTLs for albumin content, four QTLs for globulin content, three QTLs for prolamin content, four QTLs for glutelin content, and four QTLs for grain protein content. In total, 18 QTLs were detected in population-II, derived from Kongyu131/Bg94-1, five QTLs for albumin content, three QTLs for globulin content, four QTLs for prolamin content, two QTLs for glutelin content, and four QTLs for grain protein content. Three QTLs, qAlb7.1, Alb7.2, and qGPC7.2, derived from population-II (Kongyu131/Bg94-1) for albumin and grain protein content were successfully validated in the near isogenic line (NIL) populations. The localized chromosomal locus of the validated QTLs could be helpful for fine mapping via map-based cloning to discover underlying candidate genes. The functional insights of the underlying candidate gene would furnish novel perceptivity for the foundation of rice grain protein content and trigger the development of nutritionally important rice cultivars by combining marker-assisted selection (MAS) breeding.
Supplementary information: The online version contains supplementary material available at 10.1007/s11032-023-01436-7.
期刊介绍:
Molecular Breeding is an international journal publishing papers on applications of plant molecular biology, i.e., research most likely leading to practical applications. The practical applications might relate to the Developing as well as the industrialised World and have demonstrable benefits for the seed industry, farmers, processing industry, the environment and the consumer.
All papers published should contribute to the understanding and progress of modern plant breeding, encompassing the scientific disciplines of molecular biology, biochemistry, genetics, physiology, pathology, plant breeding, and ecology among others.
Molecular Breeding welcomes the following categories of papers: full papers, short communications, papers describing novel methods and review papers. All submission will be subject to peer review ensuring the highest possible scientific quality standards.
Molecular Breeding core areas:
Molecular Breeding will consider manuscripts describing contemporary methods of molecular genetics and genomic analysis, structural and functional genomics in crops, proteomics and metabolic profiling, abiotic stress and field evaluation of transgenic crops containing particular traits. Manuscripts on marker assisted breeding are also of major interest, in particular novel approaches and new results of marker assisted breeding, QTL cloning, integration of conventional and marker assisted breeding, and QTL studies in crop plants.