Chihiro Emori, Mayo Kodani, Ferheen Abbasi, Masashi Mori, Masahito Ikawa
{"title":"减数分裂恢复后母体mRNA降解需要PABPN1L。","authors":"Chihiro Emori, Mayo Kodani, Ferheen Abbasi, Masashi Mori, Masahito Ikawa","doi":"10.1262/jrd.2023-077","DOIUrl":null,"url":null,"abstract":"<p><p>Poly(A)-binding proteins (PABPs) play roles in mRNA maturation, translational activity, and decay. The functions of PABPs, especially PABPN1 and PABPC1, in somatic cells have been well-studied. However, little is known about the roles of PABPs in oocytes because of the unique mechanisms of mRNA metabolism in oocytes. This study focused on PABPN1L and generated Pabpn1l knockout (KO) mice using the CRISPR/Cas9 system. After mating tests, we found that Pabpn1l KO females were infertile due to the failure of the embryos to develop to the 4-cell stage. RNA-seq analysis revealed aberrant mRNA persistence in Pabpn1l KO-MII oocytes, which indicates impaired mRNA degradation during the germinal vesicle (GV) to MII transition. We also revealed that the exogenous expression of Pabpn1l mRNA in KO-GV oocytes recovered defects of embryonic development. PABPN1L is partly indispensable for female fertility in mice, owing to its necessity for embryonic development, which is supported by mRNA degradation during GV to MII maturation.</p>","PeriodicalId":1,"journal":{"name":"Accounts of Chemical Research","volume":null,"pages":null},"PeriodicalIF":16.4000,"publicationDate":"2024-02-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10902638/pdf/","citationCount":"0","resultStr":"{\"title\":\"PABPN1L is required for maternal mRNA degradation after meiosis resumption.\",\"authors\":\"Chihiro Emori, Mayo Kodani, Ferheen Abbasi, Masashi Mori, Masahito Ikawa\",\"doi\":\"10.1262/jrd.2023-077\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Poly(A)-binding proteins (PABPs) play roles in mRNA maturation, translational activity, and decay. The functions of PABPs, especially PABPN1 and PABPC1, in somatic cells have been well-studied. However, little is known about the roles of PABPs in oocytes because of the unique mechanisms of mRNA metabolism in oocytes. This study focused on PABPN1L and generated Pabpn1l knockout (KO) mice using the CRISPR/Cas9 system. After mating tests, we found that Pabpn1l KO females were infertile due to the failure of the embryos to develop to the 4-cell stage. RNA-seq analysis revealed aberrant mRNA persistence in Pabpn1l KO-MII oocytes, which indicates impaired mRNA degradation during the germinal vesicle (GV) to MII transition. We also revealed that the exogenous expression of Pabpn1l mRNA in KO-GV oocytes recovered defects of embryonic development. PABPN1L is partly indispensable for female fertility in mice, owing to its necessity for embryonic development, which is supported by mRNA degradation during GV to MII maturation.</p>\",\"PeriodicalId\":1,\"journal\":{\"name\":\"Accounts of Chemical Research\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":16.4000,\"publicationDate\":\"2024-02-19\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10902638/pdf/\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Accounts of Chemical Research\",\"FirstCategoryId\":\"99\",\"ListUrlMain\":\"https://doi.org/10.1262/jrd.2023-077\",\"RegionNum\":1,\"RegionCategory\":\"化学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"2023/12/7 0:00:00\",\"PubModel\":\"Epub\",\"JCR\":\"Q1\",\"JCRName\":\"CHEMISTRY, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Accounts of Chemical Research","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.1262/jrd.2023-077","RegionNum":1,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2023/12/7 0:00:00","PubModel":"Epub","JCR":"Q1","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
PABPN1L is required for maternal mRNA degradation after meiosis resumption.
Poly(A)-binding proteins (PABPs) play roles in mRNA maturation, translational activity, and decay. The functions of PABPs, especially PABPN1 and PABPC1, in somatic cells have been well-studied. However, little is known about the roles of PABPs in oocytes because of the unique mechanisms of mRNA metabolism in oocytes. This study focused on PABPN1L and generated Pabpn1l knockout (KO) mice using the CRISPR/Cas9 system. After mating tests, we found that Pabpn1l KO females were infertile due to the failure of the embryos to develop to the 4-cell stage. RNA-seq analysis revealed aberrant mRNA persistence in Pabpn1l KO-MII oocytes, which indicates impaired mRNA degradation during the germinal vesicle (GV) to MII transition. We also revealed that the exogenous expression of Pabpn1l mRNA in KO-GV oocytes recovered defects of embryonic development. PABPN1L is partly indispensable for female fertility in mice, owing to its necessity for embryonic development, which is supported by mRNA degradation during GV to MII maturation.
期刊介绍:
Accounts of Chemical Research presents short, concise and critical articles offering easy-to-read overviews of basic research and applications in all areas of chemistry and biochemistry. These short reviews focus on research from the author’s own laboratory and are designed to teach the reader about a research project. In addition, Accounts of Chemical Research publishes commentaries that give an informed opinion on a current research problem. Special Issues online are devoted to a single topic of unusual activity and significance.
Accounts of Chemical Research replaces the traditional article abstract with an article "Conspectus." These entries synopsize the research affording the reader a closer look at the content and significance of an article. Through this provision of a more detailed description of the article contents, the Conspectus enhances the article's discoverability by search engines and the exposure for the research.