{"title":"ROMK2通道与脂质激酶DGKE和AGK的相互作用:通过局部阴离子脂质合成激活潜在通道。","authors":"Milena Krajewska , Mariusz Możajew , Sławomir Filipek , Piotr Koprowski","doi":"10.1016/j.bbalip.2023.159443","DOIUrl":null,"url":null,"abstract":"<div><p><span>In this study, we utilized enzyme-catalyzed proximity labeling with the engineered promiscuous biotin<span> ligase<span> Turbo-ID to identify the proxisome of the ROMK2 channel. This channel resides in various cellular membrane compartments of the cell including the plasma membrane, endoplasmic reticulum and mitochondria. Within mitochondria, ROMK2 has been suggested as a pore-forming subunit of mitochondrial ATP-regulated potassium channel (mitoK</span></span></span><sub>ATP</sub><span><span>). We found that ROMK2 proxisome in addition to previously known protein partners included two lipid<span><span> kinases: acylglycerol kinase (AGK) and diacylglycerol kinase ε (DGKE), which are localized in mitochondria and the endoplasmic reticulum, respectively. Through co-immunoprecipitation, we confirmed that these two kinases are present in complexes with ROMK2 channels. Additionally, we found that the products of AGK and DGKE, </span>lysophosphatidic acid (LPA) and </span></span>phosphatidic acid<span><span><span> (PA), stimulated the activity of ROMK2 channels in artificial lipid bilayers. Our </span>molecular docking studies revealed the presence of acidic lipid binding sites in the ROMK2 channel, similar to those previously identified in Kir2 channels. Based on these findings, we propose a model wherein localized </span>lipid synthesis, mediated by channel-bound lipid kinases, contributes to the regulation of ROMK2 activity within distinct intracellular compartments, such as mitochondria and the endoplasmic reticulum.</span></span></p></div>","PeriodicalId":8815,"journal":{"name":"Biochimica et biophysica acta. Molecular and cell biology of lipids","volume":"1869 2","pages":"Article 159443"},"PeriodicalIF":3.9000,"publicationDate":"2023-12-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Interaction of ROMK2 channel with lipid kinases DGKE and AGK: Potential channel activation by localized anionic lipid synthesis\",\"authors\":\"Milena Krajewska , Mariusz Możajew , Sławomir Filipek , Piotr Koprowski\",\"doi\":\"10.1016/j.bbalip.2023.159443\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p><span>In this study, we utilized enzyme-catalyzed proximity labeling with the engineered promiscuous biotin<span> ligase<span> Turbo-ID to identify the proxisome of the ROMK2 channel. This channel resides in various cellular membrane compartments of the cell including the plasma membrane, endoplasmic reticulum and mitochondria. Within mitochondria, ROMK2 has been suggested as a pore-forming subunit of mitochondrial ATP-regulated potassium channel (mitoK</span></span></span><sub>ATP</sub><span><span>). We found that ROMK2 proxisome in addition to previously known protein partners included two lipid<span><span> kinases: acylglycerol kinase (AGK) and diacylglycerol kinase ε (DGKE), which are localized in mitochondria and the endoplasmic reticulum, respectively. Through co-immunoprecipitation, we confirmed that these two kinases are present in complexes with ROMK2 channels. Additionally, we found that the products of AGK and DGKE, </span>lysophosphatidic acid (LPA) and </span></span>phosphatidic acid<span><span><span> (PA), stimulated the activity of ROMK2 channels in artificial lipid bilayers. Our </span>molecular docking studies revealed the presence of acidic lipid binding sites in the ROMK2 channel, similar to those previously identified in Kir2 channels. Based on these findings, we propose a model wherein localized </span>lipid synthesis, mediated by channel-bound lipid kinases, contributes to the regulation of ROMK2 activity within distinct intracellular compartments, such as mitochondria and the endoplasmic reticulum.</span></span></p></div>\",\"PeriodicalId\":8815,\"journal\":{\"name\":\"Biochimica et biophysica acta. Molecular and cell biology of lipids\",\"volume\":\"1869 2\",\"pages\":\"Article 159443\"},\"PeriodicalIF\":3.9000,\"publicationDate\":\"2023-12-04\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Biochimica et biophysica acta. Molecular and cell biology of lipids\",\"FirstCategoryId\":\"99\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S1388198123001671\",\"RegionNum\":2,\"RegionCategory\":\"生物学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"BIOCHEMISTRY & MOLECULAR BIOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Biochimica et biophysica acta. Molecular and cell biology of lipids","FirstCategoryId":"99","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S1388198123001671","RegionNum":2,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"BIOCHEMISTRY & MOLECULAR BIOLOGY","Score":null,"Total":0}
Interaction of ROMK2 channel with lipid kinases DGKE and AGK: Potential channel activation by localized anionic lipid synthesis
In this study, we utilized enzyme-catalyzed proximity labeling with the engineered promiscuous biotin ligase Turbo-ID to identify the proxisome of the ROMK2 channel. This channel resides in various cellular membrane compartments of the cell including the plasma membrane, endoplasmic reticulum and mitochondria. Within mitochondria, ROMK2 has been suggested as a pore-forming subunit of mitochondrial ATP-regulated potassium channel (mitoKATP). We found that ROMK2 proxisome in addition to previously known protein partners included two lipid kinases: acylglycerol kinase (AGK) and diacylglycerol kinase ε (DGKE), which are localized in mitochondria and the endoplasmic reticulum, respectively. Through co-immunoprecipitation, we confirmed that these two kinases are present in complexes with ROMK2 channels. Additionally, we found that the products of AGK and DGKE, lysophosphatidic acid (LPA) and phosphatidic acid (PA), stimulated the activity of ROMK2 channels in artificial lipid bilayers. Our molecular docking studies revealed the presence of acidic lipid binding sites in the ROMK2 channel, similar to those previously identified in Kir2 channels. Based on these findings, we propose a model wherein localized lipid synthesis, mediated by channel-bound lipid kinases, contributes to the regulation of ROMK2 activity within distinct intracellular compartments, such as mitochondria and the endoplasmic reticulum.
期刊介绍:
BBA Molecular and Cell Biology of Lipids publishes papers on original research dealing with novel aspects of molecular genetics related to the lipidome, the biosynthesis of lipids, the role of lipids in cells and whole organisms, the regulation of lipid metabolism and function, and lipidomics in all organisms. Manuscripts should significantly advance the understanding of the molecular mechanisms underlying biological processes in which lipids are involved. Papers detailing novel methodology must report significant biochemical, molecular, or functional insight in the area of lipids.