Yaiza R. Varela, Marina N. Iriondo, Félix M. Goñi, Alicia Alonso, L. Ruth Montes
{"title":"神经酰胺调节自噬:一种生物物理学方法。","authors":"Yaiza R. Varela, Marina N. Iriondo, Félix M. Goñi, Alicia Alonso, L. Ruth Montes","doi":"10.1016/j.bbalip.2023.159444","DOIUrl":null,"url":null,"abstract":"<div><p>Specific membrane lipids play unique roles in (macro)autophagy. Those include phosphatidylethanolamine, to which LC3/GABARAP autophagy proteins become covalently bound in the process, or cardiolipin, an important effector in mitochondrial autophagy (or mitophagy). Ceramide (Cer), or N-acyl sphingosine, is one of the simplest sphingolipids, known as a stress signal in the apoptotic pathway. Moreover, Cer is increasingly being recognized as an autophagy activator, although its mechanism of action is unclear. In the present review, the proposed Cer roles in autophagy are summarized, together with some biophysical properties of Cer in membranes. Possible pathways for Cer activation of autophagy are discussed, including specific protein binding of the lipid, and Cer-dependent perturbation of bilayer properties. Cer generation of lateral inhomogeneities (domain formation) is given special attention. Recent biophysical results, including fluorescence and atomic force microscopy data, show Cer-promoted enhanced binding of LC3/GABARAP to lipid bilayers. These observations could be interpreted in terms of the putative formation of Cer-rich nanodomains.</p></div>","PeriodicalId":8815,"journal":{"name":"Biochimica et biophysica acta. Molecular and cell biology of lipids","volume":"1869 2","pages":"Article 159444"},"PeriodicalIF":3.9000,"publicationDate":"2023-12-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.sciencedirect.com/science/article/pii/S1388198123001683/pdfft?md5=7e64144e53370668f533480c94d9ca62&pid=1-s2.0-S1388198123001683-main.pdf","citationCount":"0","resultStr":"{\"title\":\"Ceramide regulation of autophagy: A biophysical approach\",\"authors\":\"Yaiza R. Varela, Marina N. Iriondo, Félix M. Goñi, Alicia Alonso, L. Ruth Montes\",\"doi\":\"10.1016/j.bbalip.2023.159444\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>Specific membrane lipids play unique roles in (macro)autophagy. Those include phosphatidylethanolamine, to which LC3/GABARAP autophagy proteins become covalently bound in the process, or cardiolipin, an important effector in mitochondrial autophagy (or mitophagy). Ceramide (Cer), or N-acyl sphingosine, is one of the simplest sphingolipids, known as a stress signal in the apoptotic pathway. Moreover, Cer is increasingly being recognized as an autophagy activator, although its mechanism of action is unclear. In the present review, the proposed Cer roles in autophagy are summarized, together with some biophysical properties of Cer in membranes. Possible pathways for Cer activation of autophagy are discussed, including specific protein binding of the lipid, and Cer-dependent perturbation of bilayer properties. Cer generation of lateral inhomogeneities (domain formation) is given special attention. Recent biophysical results, including fluorescence and atomic force microscopy data, show Cer-promoted enhanced binding of LC3/GABARAP to lipid bilayers. These observations could be interpreted in terms of the putative formation of Cer-rich nanodomains.</p></div>\",\"PeriodicalId\":8815,\"journal\":{\"name\":\"Biochimica et biophysica acta. Molecular and cell biology of lipids\",\"volume\":\"1869 2\",\"pages\":\"Article 159444\"},\"PeriodicalIF\":3.9000,\"publicationDate\":\"2023-12-04\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.sciencedirect.com/science/article/pii/S1388198123001683/pdfft?md5=7e64144e53370668f533480c94d9ca62&pid=1-s2.0-S1388198123001683-main.pdf\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Biochimica et biophysica acta. Molecular and cell biology of lipids\",\"FirstCategoryId\":\"99\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S1388198123001683\",\"RegionNum\":2,\"RegionCategory\":\"生物学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"BIOCHEMISTRY & MOLECULAR BIOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Biochimica et biophysica acta. Molecular and cell biology of lipids","FirstCategoryId":"99","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S1388198123001683","RegionNum":2,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"BIOCHEMISTRY & MOLECULAR BIOLOGY","Score":null,"Total":0}
Ceramide regulation of autophagy: A biophysical approach
Specific membrane lipids play unique roles in (macro)autophagy. Those include phosphatidylethanolamine, to which LC3/GABARAP autophagy proteins become covalently bound in the process, or cardiolipin, an important effector in mitochondrial autophagy (or mitophagy). Ceramide (Cer), or N-acyl sphingosine, is one of the simplest sphingolipids, known as a stress signal in the apoptotic pathway. Moreover, Cer is increasingly being recognized as an autophagy activator, although its mechanism of action is unclear. In the present review, the proposed Cer roles in autophagy are summarized, together with some biophysical properties of Cer in membranes. Possible pathways for Cer activation of autophagy are discussed, including specific protein binding of the lipid, and Cer-dependent perturbation of bilayer properties. Cer generation of lateral inhomogeneities (domain formation) is given special attention. Recent biophysical results, including fluorescence and atomic force microscopy data, show Cer-promoted enhanced binding of LC3/GABARAP to lipid bilayers. These observations could be interpreted in terms of the putative formation of Cer-rich nanodomains.
期刊介绍:
BBA Molecular and Cell Biology of Lipids publishes papers on original research dealing with novel aspects of molecular genetics related to the lipidome, the biosynthesis of lipids, the role of lipids in cells and whole organisms, the regulation of lipid metabolism and function, and lipidomics in all organisms. Manuscripts should significantly advance the understanding of the molecular mechanisms underlying biological processes in which lipids are involved. Papers detailing novel methodology must report significant biochemical, molecular, or functional insight in the area of lipids.