{"title":"基于USLE和GIS技术的埃塞俄比亚阿瓦什河Ada 'a流域土壤侵蚀模型及输沙指数分析","authors":"Abayneh Tilahun, Hayal Desta","doi":"10.1186/s40562-023-00311-9","DOIUrl":null,"url":null,"abstract":"Ethiopia faces a significant challenge in combating soil erosion. This study addresses the concern within Ada’a watershed of the Awash River basin. GIS and the Universal Soil Loss Equation (USLE) Model were used to predict soil loss and the sediment transport index (STI) in the Ada’a watershed of the Awash River basin. RUSLE model required intensive rainfall data registered continuously for 30 min, due to unavailability of this Rainfall data USLE model were preferred. Moreover, USLE model was chosen because of its straightforward methodology and accessibility to data. The study's objectives were to determine the mean annual soil loss rate, STI, and to identify and rank the most important erosion-prone spots for soil conservation planning. Using the interactive Spatial Analyst Tool Map Algebra Raster Calculator in the ArcGIS environment, the mean annual soil loss was estimated based on grid cells by multiplying the corresponding USLE factor values (R, K, LS, C, and P). The STI was also calculated on the Raster Calculator in ArcGIS using flow accumulation and slope gradients. The result shows that R, K, LS, C, and P factor values were estimated in the watershed as 344.9 to 879.65 MJ mm h−1 year−1, 0.11 to 0.38, 0% to 22.23%, 0 to 1, and 0.55 to 1, respectively. The overall annual soil loss in the watershed ranged from 0 to 457.4 tons ha−1 year−1. The Sediment Transport Index ranges from 0 to 856.193. The result implies there is increasing rate of soil losses and sediments observed at alarming rate. The highest rate of soil loss was found in the watershed’s lowest parts. Accordingly, sustainable erosion control mechanisms based on topography and land use types are highly recommended, especially in the upper part of the watershed.","PeriodicalId":48596,"journal":{"name":"Geoscience Letters","volume":"53 12","pages":""},"PeriodicalIF":4.0000,"publicationDate":"2023-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Soil erosion modeling and sediment transport index analysis using USLE and GIS techniques in Ada’a watershed, Awash River Basin, Ethiopia\",\"authors\":\"Abayneh Tilahun, Hayal Desta\",\"doi\":\"10.1186/s40562-023-00311-9\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Ethiopia faces a significant challenge in combating soil erosion. This study addresses the concern within Ada’a watershed of the Awash River basin. GIS and the Universal Soil Loss Equation (USLE) Model were used to predict soil loss and the sediment transport index (STI) in the Ada’a watershed of the Awash River basin. RUSLE model required intensive rainfall data registered continuously for 30 min, due to unavailability of this Rainfall data USLE model were preferred. Moreover, USLE model was chosen because of its straightforward methodology and accessibility to data. The study's objectives were to determine the mean annual soil loss rate, STI, and to identify and rank the most important erosion-prone spots for soil conservation planning. Using the interactive Spatial Analyst Tool Map Algebra Raster Calculator in the ArcGIS environment, the mean annual soil loss was estimated based on grid cells by multiplying the corresponding USLE factor values (R, K, LS, C, and P). The STI was also calculated on the Raster Calculator in ArcGIS using flow accumulation and slope gradients. The result shows that R, K, LS, C, and P factor values were estimated in the watershed as 344.9 to 879.65 MJ mm h−1 year−1, 0.11 to 0.38, 0% to 22.23%, 0 to 1, and 0.55 to 1, respectively. The overall annual soil loss in the watershed ranged from 0 to 457.4 tons ha−1 year−1. The Sediment Transport Index ranges from 0 to 856.193. The result implies there is increasing rate of soil losses and sediments observed at alarming rate. The highest rate of soil loss was found in the watershed’s lowest parts. Accordingly, sustainable erosion control mechanisms based on topography and land use types are highly recommended, especially in the upper part of the watershed.\",\"PeriodicalId\":48596,\"journal\":{\"name\":\"Geoscience Letters\",\"volume\":\"53 12\",\"pages\":\"\"},\"PeriodicalIF\":4.0000,\"publicationDate\":\"2023-12-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Geoscience Letters\",\"FirstCategoryId\":\"89\",\"ListUrlMain\":\"https://doi.org/10.1186/s40562-023-00311-9\",\"RegionNum\":3,\"RegionCategory\":\"地球科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"GEOSCIENCES, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Geoscience Letters","FirstCategoryId":"89","ListUrlMain":"https://doi.org/10.1186/s40562-023-00311-9","RegionNum":3,"RegionCategory":"地球科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"GEOSCIENCES, MULTIDISCIPLINARY","Score":null,"Total":0}
Soil erosion modeling and sediment transport index analysis using USLE and GIS techniques in Ada’a watershed, Awash River Basin, Ethiopia
Ethiopia faces a significant challenge in combating soil erosion. This study addresses the concern within Ada’a watershed of the Awash River basin. GIS and the Universal Soil Loss Equation (USLE) Model were used to predict soil loss and the sediment transport index (STI) in the Ada’a watershed of the Awash River basin. RUSLE model required intensive rainfall data registered continuously for 30 min, due to unavailability of this Rainfall data USLE model were preferred. Moreover, USLE model was chosen because of its straightforward methodology and accessibility to data. The study's objectives were to determine the mean annual soil loss rate, STI, and to identify and rank the most important erosion-prone spots for soil conservation planning. Using the interactive Spatial Analyst Tool Map Algebra Raster Calculator in the ArcGIS environment, the mean annual soil loss was estimated based on grid cells by multiplying the corresponding USLE factor values (R, K, LS, C, and P). The STI was also calculated on the Raster Calculator in ArcGIS using flow accumulation and slope gradients. The result shows that R, K, LS, C, and P factor values were estimated in the watershed as 344.9 to 879.65 MJ mm h−1 year−1, 0.11 to 0.38, 0% to 22.23%, 0 to 1, and 0.55 to 1, respectively. The overall annual soil loss in the watershed ranged from 0 to 457.4 tons ha−1 year−1. The Sediment Transport Index ranges from 0 to 856.193. The result implies there is increasing rate of soil losses and sediments observed at alarming rate. The highest rate of soil loss was found in the watershed’s lowest parts. Accordingly, sustainable erosion control mechanisms based on topography and land use types are highly recommended, especially in the upper part of the watershed.
Geoscience LettersEarth and Planetary Sciences-General Earth and Planetary Sciences
CiteScore
4.90
自引率
2.50%
发文量
42
审稿时长
25 weeks
期刊介绍:
Geoscience Letters is the official journal of the Asia Oceania Geosciences Society, and a fully open access journal published under the SpringerOpen brand. The journal publishes original, innovative and timely research letter articles and concise reviews on studies of the Earth and its environment, the planetary and space sciences. Contributions reflect the eight scientific sections of the AOGS: Atmospheric Sciences, Biogeosciences, Hydrological Sciences, Interdisciplinary Geosciences, Ocean Sciences, Planetary Sciences, Solar and Terrestrial Sciences, and Solid Earth Sciences. Geoscience Letters focuses on cutting-edge fundamental and applied research in the broad field of the geosciences, including the applications of geoscience research to societal problems. This journal is Open Access, providing rapid electronic publication of high-quality, peer-reviewed scientific contributions.