{"title":"进化电路设计中笛卡儿遗传规划的语义导向突变算子","authors":"Hodan, David, Mrazek, Vojtech, Vasicek, Zdenek","doi":"10.1007/s10710-021-09416-6","DOIUrl":null,"url":null,"abstract":"<p>Cartesian genetic programming (CGP) represents the most efficient method for the evolution of digital circuits. Despite many successful applications, however, CGP suffers from limited scalability, especially when used for evolutionary circuit design, i.e. design of circuits from a randomly initialized population. Considering the multiplier design problem, for example, the 5<span>\\(\\times\\)</span>5-bit multiplier represents the most complex circuit designed by the evolution from scratch. The efficiency of CGP highly depends on the performance of the point mutation operator, however, this operator is purely stochastic. This contrasts with the recent developments in genetic programming (GP), where advanced informed approaches such as semantic-aware operators are incorporated to improve the search space exploration capability of GP. In this paper, we propose a semantically-oriented mutation operator (<span>\\(\\mathrm {SOMO}^k\\)</span>) suitable for the evolutionary design of combinational circuits. In contrast to standard point mutation modifying the values of the mutated genes randomly, the proposed operator uses semantics to determine the best value for each mutated gene. Compared to the common CGP and its variants, the proposed method converges on common Boolean benchmarks substantially faster while keeping the phenotype size relatively small. The successfully evolved instances presented in this paper include 10-bit parity, 10 + 10-bit adder and 5<span>\\(\\times\\)</span>5-bit multiplier. The most complex circuits were evolved in less than one hour with a single-thread implementation running on a common CPU.</p>","PeriodicalId":50424,"journal":{"name":"Genetic Programming and Evolvable Machines","volume":"29 7","pages":""},"PeriodicalIF":1.7000,"publicationDate":"2021-10-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Semantically-oriented mutation operator in cartesian genetic programming for evolutionary circuit design\",\"authors\":\"Hodan, David, Mrazek, Vojtech, Vasicek, Zdenek\",\"doi\":\"10.1007/s10710-021-09416-6\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>Cartesian genetic programming (CGP) represents the most efficient method for the evolution of digital circuits. Despite many successful applications, however, CGP suffers from limited scalability, especially when used for evolutionary circuit design, i.e. design of circuits from a randomly initialized population. Considering the multiplier design problem, for example, the 5<span>\\\\(\\\\times\\\\)</span>5-bit multiplier represents the most complex circuit designed by the evolution from scratch. The efficiency of CGP highly depends on the performance of the point mutation operator, however, this operator is purely stochastic. This contrasts with the recent developments in genetic programming (GP), where advanced informed approaches such as semantic-aware operators are incorporated to improve the search space exploration capability of GP. In this paper, we propose a semantically-oriented mutation operator (<span>\\\\(\\\\mathrm {SOMO}^k\\\\)</span>) suitable for the evolutionary design of combinational circuits. In contrast to standard point mutation modifying the values of the mutated genes randomly, the proposed operator uses semantics to determine the best value for each mutated gene. Compared to the common CGP and its variants, the proposed method converges on common Boolean benchmarks substantially faster while keeping the phenotype size relatively small. The successfully evolved instances presented in this paper include 10-bit parity, 10 + 10-bit adder and 5<span>\\\\(\\\\times\\\\)</span>5-bit multiplier. The most complex circuits were evolved in less than one hour with a single-thread implementation running on a common CPU.</p>\",\"PeriodicalId\":50424,\"journal\":{\"name\":\"Genetic Programming and Evolvable Machines\",\"volume\":\"29 7\",\"pages\":\"\"},\"PeriodicalIF\":1.7000,\"publicationDate\":\"2021-10-02\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Genetic Programming and Evolvable Machines\",\"FirstCategoryId\":\"94\",\"ListUrlMain\":\"https://doi.org/10.1007/s10710-021-09416-6\",\"RegionNum\":3,\"RegionCategory\":\"计算机科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"COMPUTER SCIENCE, ARTIFICIAL INTELLIGENCE\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Genetic Programming and Evolvable Machines","FirstCategoryId":"94","ListUrlMain":"https://doi.org/10.1007/s10710-021-09416-6","RegionNum":3,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"COMPUTER SCIENCE, ARTIFICIAL INTELLIGENCE","Score":null,"Total":0}
Semantically-oriented mutation operator in cartesian genetic programming for evolutionary circuit design
Cartesian genetic programming (CGP) represents the most efficient method for the evolution of digital circuits. Despite many successful applications, however, CGP suffers from limited scalability, especially when used for evolutionary circuit design, i.e. design of circuits from a randomly initialized population. Considering the multiplier design problem, for example, the 5\(\times\)5-bit multiplier represents the most complex circuit designed by the evolution from scratch. The efficiency of CGP highly depends on the performance of the point mutation operator, however, this operator is purely stochastic. This contrasts with the recent developments in genetic programming (GP), where advanced informed approaches such as semantic-aware operators are incorporated to improve the search space exploration capability of GP. In this paper, we propose a semantically-oriented mutation operator (\(\mathrm {SOMO}^k\)) suitable for the evolutionary design of combinational circuits. In contrast to standard point mutation modifying the values of the mutated genes randomly, the proposed operator uses semantics to determine the best value for each mutated gene. Compared to the common CGP and its variants, the proposed method converges on common Boolean benchmarks substantially faster while keeping the phenotype size relatively small. The successfully evolved instances presented in this paper include 10-bit parity, 10 + 10-bit adder and 5\(\times\)5-bit multiplier. The most complex circuits were evolved in less than one hour with a single-thread implementation running on a common CPU.
期刊介绍:
A unique source reporting on methods for artificial evolution of programs and machines...
Reports innovative and significant progress in automatic evolution of software and hardware.
Features both theoretical and application papers.
Covers hardware implementations, artificial life, molecular computing and emergent computation techniques.
Examines such related topics as evolutionary algorithms with variable-size genomes, alternate methods of program induction, approaches to engineering systems development based on embryology, morphogenesis or other techniques inspired by adaptive natural systems.