Nagarajan Usharani, Swarna V. Kanth, Natarajan Saravanan
{"title":"用于肺部感染的仿生纳米材料:药物输送系统的前瞻性观点","authors":"Nagarajan Usharani, Swarna V. Kanth, Natarajan Saravanan","doi":"10.1007/s13204-023-02981-5","DOIUrl":null,"url":null,"abstract":"<div><p>Respiratory infections are quite challenging due to their complexity in ailments and composition of viral genetic material and their rate of proliferation. In particular, the eradication of viral illness is still a concern, irrespective of advancements in prevention and remedial procedures. The nature of the viral particle with the possibility of rapid transmission is prone to attach on the deposited surface for days together. This antigen expulses due to sneezing or coughing resulted in multiphase turbulent flow, contaminates the surroundings and is carried away by simple touch or inhalation and find newer hosts for instance, SARSCoV-2 aerosols remain viable for about an hour leading to infection. The present review focuses on the remedial aspects of respiratory infections through a knowledge-based approach towards nanosystems. The complete understanding of standard antiviral drugs and the remodelling of these drugs through nanosystems still is the need of the hour. The genetic material and epidemiology of viral antigen, help in redefining standard drugs along with nanocarriers to achieve more feasible and hour-based approach. The main goal of this review is to elaborate on the repurposing of existing standard antiviral drugs and ways to accelerate their mode of action to promote a feasible and hour-based approach. The consolidated three-dimensional approaches aimed at sustained, targeted and optimized levels of drug concentration in the circulating system along with bioactive nanocarriers which could effectively pass the cell membrane were reported. The platforms for nanomaterial evolution depend on nature of source, size, structure, and their unique functionalities (Stable, speedy, and long-lasting recovery procedure). However, the research activities and literature on coronavirus have been overwhelming but the information on the sustainability of nanotherapy in SARS-CoV-2 is still in the developmental stage. Hereby, the clinical aspects of SARS-CoV-2 and the eradication strategy developed for antiviral infections through nanotechnology will pave the way ahead for treating upcoming new variants or other pandemics.</p></div>","PeriodicalId":471,"journal":{"name":"Applied Nanoscience","volume":"14 2","pages":"363 - 373"},"PeriodicalIF":3.6740,"publicationDate":"2023-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Biomimetic nanomaterials for pulmonary infections: A prospective view in drug delivery systems\",\"authors\":\"Nagarajan Usharani, Swarna V. Kanth, Natarajan Saravanan\",\"doi\":\"10.1007/s13204-023-02981-5\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>Respiratory infections are quite challenging due to their complexity in ailments and composition of viral genetic material and their rate of proliferation. In particular, the eradication of viral illness is still a concern, irrespective of advancements in prevention and remedial procedures. The nature of the viral particle with the possibility of rapid transmission is prone to attach on the deposited surface for days together. This antigen expulses due to sneezing or coughing resulted in multiphase turbulent flow, contaminates the surroundings and is carried away by simple touch or inhalation and find newer hosts for instance, SARSCoV-2 aerosols remain viable for about an hour leading to infection. The present review focuses on the remedial aspects of respiratory infections through a knowledge-based approach towards nanosystems. The complete understanding of standard antiviral drugs and the remodelling of these drugs through nanosystems still is the need of the hour. The genetic material and epidemiology of viral antigen, help in redefining standard drugs along with nanocarriers to achieve more feasible and hour-based approach. The main goal of this review is to elaborate on the repurposing of existing standard antiviral drugs and ways to accelerate their mode of action to promote a feasible and hour-based approach. The consolidated three-dimensional approaches aimed at sustained, targeted and optimized levels of drug concentration in the circulating system along with bioactive nanocarriers which could effectively pass the cell membrane were reported. The platforms for nanomaterial evolution depend on nature of source, size, structure, and their unique functionalities (Stable, speedy, and long-lasting recovery procedure). However, the research activities and literature on coronavirus have been overwhelming but the information on the sustainability of nanotherapy in SARS-CoV-2 is still in the developmental stage. Hereby, the clinical aspects of SARS-CoV-2 and the eradication strategy developed for antiviral infections through nanotechnology will pave the way ahead for treating upcoming new variants or other pandemics.</p></div>\",\"PeriodicalId\":471,\"journal\":{\"name\":\"Applied Nanoscience\",\"volume\":\"14 2\",\"pages\":\"363 - 373\"},\"PeriodicalIF\":3.6740,\"publicationDate\":\"2023-12-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Applied Nanoscience\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://link.springer.com/article/10.1007/s13204-023-02981-5\",\"RegionNum\":4,\"RegionCategory\":\"工程技术\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"Engineering\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Applied Nanoscience","FirstCategoryId":"5","ListUrlMain":"https://link.springer.com/article/10.1007/s13204-023-02981-5","RegionNum":4,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"Engineering","Score":null,"Total":0}
Biomimetic nanomaterials for pulmonary infections: A prospective view in drug delivery systems
Respiratory infections are quite challenging due to their complexity in ailments and composition of viral genetic material and their rate of proliferation. In particular, the eradication of viral illness is still a concern, irrespective of advancements in prevention and remedial procedures. The nature of the viral particle with the possibility of rapid transmission is prone to attach on the deposited surface for days together. This antigen expulses due to sneezing or coughing resulted in multiphase turbulent flow, contaminates the surroundings and is carried away by simple touch or inhalation and find newer hosts for instance, SARSCoV-2 aerosols remain viable for about an hour leading to infection. The present review focuses on the remedial aspects of respiratory infections through a knowledge-based approach towards nanosystems. The complete understanding of standard antiviral drugs and the remodelling of these drugs through nanosystems still is the need of the hour. The genetic material and epidemiology of viral antigen, help in redefining standard drugs along with nanocarriers to achieve more feasible and hour-based approach. The main goal of this review is to elaborate on the repurposing of existing standard antiviral drugs and ways to accelerate their mode of action to promote a feasible and hour-based approach. The consolidated three-dimensional approaches aimed at sustained, targeted and optimized levels of drug concentration in the circulating system along with bioactive nanocarriers which could effectively pass the cell membrane were reported. The platforms for nanomaterial evolution depend on nature of source, size, structure, and their unique functionalities (Stable, speedy, and long-lasting recovery procedure). However, the research activities and literature on coronavirus have been overwhelming but the information on the sustainability of nanotherapy in SARS-CoV-2 is still in the developmental stage. Hereby, the clinical aspects of SARS-CoV-2 and the eradication strategy developed for antiviral infections through nanotechnology will pave the way ahead for treating upcoming new variants or other pandemics.
期刊介绍:
Applied Nanoscience is a hybrid journal that publishes original articles about state of the art nanoscience and the application of emerging nanotechnologies to areas fundamental to building technologically advanced and sustainable civilization, including areas as diverse as water science, advanced materials, energy, electronics, environmental science and medicine. The journal accepts original and review articles as well as book reviews for publication. All the manuscripts are single-blind peer-reviewed for scientific quality and acceptance.