{"title":"鲁棒的高姿态面部表情识别系统","authors":"Owusu, Ebenezer, Appati, Justice Kwame, Okae, Percy","doi":"10.1186/s42492-022-00109-0","DOIUrl":null,"url":null,"abstract":"Facial expression recognition (FER) has numerous applications in computer security, neuroscience, psychology, and engineering. Owing to its non-intrusiveness, it is considered a useful technology for combating crime. However, FER is plagued with several challenges, the most serious of which is its poor prediction accuracy in severe head poses. The aim of this study, therefore, is to improve the recognition accuracy in severe head poses by proposing a robust 3D head-tracking algorithm based on an ellipsoidal model, advanced ensemble of AdaBoost, and saturated vector machine (SVM). The FER features are tracked from one frame to the next using the ellipsoidal tracking model, and the visible expressive facial key points are extracted using Gabor filters. The ensemble algorithm (Ada-AdaSVM) is then used for feature selection and classification. The proposed technique is evaluated using the Bosphorus, BU-3DFE, MMI, CK + , and BP4D-Spontaneous facial expression databases. The overall performance is outstanding.","PeriodicalId":3,"journal":{"name":"ACS Applied Electronic Materials","volume":null,"pages":null},"PeriodicalIF":4.3000,"publicationDate":"2022-05-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"Robust facial expression recognition system in higher poses\",\"authors\":\"Owusu, Ebenezer, Appati, Justice Kwame, Okae, Percy\",\"doi\":\"10.1186/s42492-022-00109-0\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Facial expression recognition (FER) has numerous applications in computer security, neuroscience, psychology, and engineering. Owing to its non-intrusiveness, it is considered a useful technology for combating crime. However, FER is plagued with several challenges, the most serious of which is its poor prediction accuracy in severe head poses. The aim of this study, therefore, is to improve the recognition accuracy in severe head poses by proposing a robust 3D head-tracking algorithm based on an ellipsoidal model, advanced ensemble of AdaBoost, and saturated vector machine (SVM). The FER features are tracked from one frame to the next using the ellipsoidal tracking model, and the visible expressive facial key points are extracted using Gabor filters. The ensemble algorithm (Ada-AdaSVM) is then used for feature selection and classification. The proposed technique is evaluated using the Bosphorus, BU-3DFE, MMI, CK + , and BP4D-Spontaneous facial expression databases. The overall performance is outstanding.\",\"PeriodicalId\":3,\"journal\":{\"name\":\"ACS Applied Electronic Materials\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":4.3000,\"publicationDate\":\"2022-05-16\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"ACS Applied Electronic Materials\",\"FirstCategoryId\":\"94\",\"ListUrlMain\":\"https://doi.org/10.1186/s42492-022-00109-0\",\"RegionNum\":3,\"RegionCategory\":\"材料科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"ENGINEERING, ELECTRICAL & ELECTRONIC\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"ACS Applied Electronic Materials","FirstCategoryId":"94","ListUrlMain":"https://doi.org/10.1186/s42492-022-00109-0","RegionNum":3,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ENGINEERING, ELECTRICAL & ELECTRONIC","Score":null,"Total":0}
引用次数: 1
摘要
面部表情识别(FER)在计算机安全、神经科学、心理学和工程学中有着广泛的应用。由于其非侵入性,它被认为是打击犯罪的有用技术。然而,该方法面临着一些挑战,其中最严重的是对严重头部姿势的预测精度较差。为此,本研究提出了一种基于椭球体模型、AdaBoost高级集成和饱和向量机(SVM)的鲁棒三维头部跟踪算法,以提高严重头部姿态的识别精度。利用椭球体跟踪模型对图像进行逐帧跟踪,并利用Gabor滤波器提取可见的面部表情关键点。然后使用集成算法(Ada-AdaSVM)进行特征选择和分类。使用Bosphorus, BU-3DFE, MMI, CK +和bp4d -自发面部表情数据库对所提出的技术进行评估。整体表现非常出色。
Robust facial expression recognition system in higher poses
Facial expression recognition (FER) has numerous applications in computer security, neuroscience, psychology, and engineering. Owing to its non-intrusiveness, it is considered a useful technology for combating crime. However, FER is plagued with several challenges, the most serious of which is its poor prediction accuracy in severe head poses. The aim of this study, therefore, is to improve the recognition accuracy in severe head poses by proposing a robust 3D head-tracking algorithm based on an ellipsoidal model, advanced ensemble of AdaBoost, and saturated vector machine (SVM). The FER features are tracked from one frame to the next using the ellipsoidal tracking model, and the visible expressive facial key points are extracted using Gabor filters. The ensemble algorithm (Ada-AdaSVM) is then used for feature selection and classification. The proposed technique is evaluated using the Bosphorus, BU-3DFE, MMI, CK + , and BP4D-Spontaneous facial expression databases. The overall performance is outstanding.