体位变化对颈内动脉分叉动脉瘤血流动力学影响的数值研究

IF 4.3 3区 材料科学 Q1 ENGINEERING, ELECTRICAL & ELECTRONIC
Ballambat, Raghuvir Pai, Zuber, Mohammad, Khader, Shah Mohammed Abdul, Ayachit, Anurag, Ahmad, Kamarul Arifin bin, Vedula, Rajanikanth Rao, Kamath, Sevagur Ganesh, Shuaib, Ibrahim Lutfi
{"title":"体位变化对颈内动脉分叉动脉瘤血流动力学影响的数值研究","authors":"Ballambat, Raghuvir Pai, Zuber, Mohammad, Khader, Shah Mohammed Abdul, Ayachit, Anurag, Ahmad, Kamarul Arifin bin, Vedula, Rajanikanth Rao, Kamath, Sevagur Ganesh, Shuaib, Ibrahim Lutfi","doi":"10.1186/s42492-022-00107-2","DOIUrl":null,"url":null,"abstract":"Cerebral intracranial aneurysms are serious problems that can lead to stroke, coma, and even death. The effect of blood flow on cerebral aneurysms and their relationship with rupture are unknown. In addition, postural changes and their relevance to haemodynamics of blood flow are difficult to measure in vivo using clinical imaging alone. Computational simulations investigating the detailed haemodynamics in cerebral aneurysms have been developed in recent times not only to understand the progression and rupture but also for clinical evaluation and treatment. In the present study, the haemodynamics of a patient-specific case of a large aneurysm on the left side internal carotid bifurcation (LICA) and no aneurysm on the right side internal carotid bifurcation (RICA) was investigated. The simulation of these patient-specific models using fluid–structure interaction provides a valuable comparison of flow behavior between normal and aneurysm models. The influences of postural changes were investigated during standing, sleeping, and head-down (HD) position. Significant changes in flow were observed during the HD position and quit high arterial blood pressure in the internal carotid artery (ICA) aneurysm model was established when compared to the normal ICA model. The velocity increased abruptly during the HD position by more than four times (LICA and RICA) and wall shear stress by four times (LICA) to ten times (RICA). The complex spiral flow and higher pressures prevailing within the dome increase the risk of aneurysm rupture.","PeriodicalId":3,"journal":{"name":"ACS Applied Electronic Materials","volume":null,"pages":null},"PeriodicalIF":4.3000,"publicationDate":"2022-04-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"3","resultStr":"{\"title\":\"Influence of postural changes on haemodynamics in internal carotid artery bifurcation aneurysm using numerical methods\",\"authors\":\"Ballambat, Raghuvir Pai, Zuber, Mohammad, Khader, Shah Mohammed Abdul, Ayachit, Anurag, Ahmad, Kamarul Arifin bin, Vedula, Rajanikanth Rao, Kamath, Sevagur Ganesh, Shuaib, Ibrahim Lutfi\",\"doi\":\"10.1186/s42492-022-00107-2\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Cerebral intracranial aneurysms are serious problems that can lead to stroke, coma, and even death. The effect of blood flow on cerebral aneurysms and their relationship with rupture are unknown. In addition, postural changes and their relevance to haemodynamics of blood flow are difficult to measure in vivo using clinical imaging alone. Computational simulations investigating the detailed haemodynamics in cerebral aneurysms have been developed in recent times not only to understand the progression and rupture but also for clinical evaluation and treatment. In the present study, the haemodynamics of a patient-specific case of a large aneurysm on the left side internal carotid bifurcation (LICA) and no aneurysm on the right side internal carotid bifurcation (RICA) was investigated. The simulation of these patient-specific models using fluid–structure interaction provides a valuable comparison of flow behavior between normal and aneurysm models. The influences of postural changes were investigated during standing, sleeping, and head-down (HD) position. Significant changes in flow were observed during the HD position and quit high arterial blood pressure in the internal carotid artery (ICA) aneurysm model was established when compared to the normal ICA model. The velocity increased abruptly during the HD position by more than four times (LICA and RICA) and wall shear stress by four times (LICA) to ten times (RICA). The complex spiral flow and higher pressures prevailing within the dome increase the risk of aneurysm rupture.\",\"PeriodicalId\":3,\"journal\":{\"name\":\"ACS Applied Electronic Materials\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":4.3000,\"publicationDate\":\"2022-04-08\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"3\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"ACS Applied Electronic Materials\",\"FirstCategoryId\":\"94\",\"ListUrlMain\":\"https://doi.org/10.1186/s42492-022-00107-2\",\"RegionNum\":3,\"RegionCategory\":\"材料科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"ENGINEERING, ELECTRICAL & ELECTRONIC\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"ACS Applied Electronic Materials","FirstCategoryId":"94","ListUrlMain":"https://doi.org/10.1186/s42492-022-00107-2","RegionNum":3,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ENGINEERING, ELECTRICAL & ELECTRONIC","Score":null,"Total":0}
引用次数: 3

摘要

颅内动脉瘤是一种严重的疾病,可导致中风、昏迷甚至死亡。血流对脑动脉瘤的影响及其与动脉瘤破裂的关系尚不清楚。此外,体位变化及其与血流动力学的相关性很难单独使用临床成像在体内测量。近年来,研究脑动脉瘤血流动力学的计算模拟不仅用于了解动脉瘤的进展和破裂,而且用于临床评估和治疗。在本研究中,我们研究了一例在左侧颈内动脉分叉(LICA)有大动脉瘤而在右侧颈内动脉分叉(RICA)没有动脉瘤的患者的血流动力学。利用流固相互作用对这些患者特异性模型进行模拟,为正常和动脉瘤模型之间的流动行为提供了有价值的比较。研究了站立、睡眠和头朝下(HD)姿势变化的影响。HD体位血流变化明显,与正常ICA模型相比,颈内动脉(ICA)动脉瘤模型血压明显升高。在HD位置,速度陡增4倍以上(LICA和RICA),壁面剪应力陡增4倍(LICA)至10倍(RICA)。穹顶内复杂的螺旋流和较高的压力增加了动脉瘤破裂的风险。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Influence of postural changes on haemodynamics in internal carotid artery bifurcation aneurysm using numerical methods
Cerebral intracranial aneurysms are serious problems that can lead to stroke, coma, and even death. The effect of blood flow on cerebral aneurysms and their relationship with rupture are unknown. In addition, postural changes and their relevance to haemodynamics of blood flow are difficult to measure in vivo using clinical imaging alone. Computational simulations investigating the detailed haemodynamics in cerebral aneurysms have been developed in recent times not only to understand the progression and rupture but also for clinical evaluation and treatment. In the present study, the haemodynamics of a patient-specific case of a large aneurysm on the left side internal carotid bifurcation (LICA) and no aneurysm on the right side internal carotid bifurcation (RICA) was investigated. The simulation of these patient-specific models using fluid–structure interaction provides a valuable comparison of flow behavior between normal and aneurysm models. The influences of postural changes were investigated during standing, sleeping, and head-down (HD) position. Significant changes in flow were observed during the HD position and quit high arterial blood pressure in the internal carotid artery (ICA) aneurysm model was established when compared to the normal ICA model. The velocity increased abruptly during the HD position by more than four times (LICA and RICA) and wall shear stress by four times (LICA) to ten times (RICA). The complex spiral flow and higher pressures prevailing within the dome increase the risk of aneurysm rupture.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
7.20
自引率
4.30%
发文量
567
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信