由评分函数引起的最优运输散度

Silvana M. Pesenti, Steven Vanduffel
{"title":"由评分函数引起的最优运输散度","authors":"Silvana M. Pesenti, Steven Vanduffel","doi":"arxiv-2311.12183","DOIUrl":null,"url":null,"abstract":"We employ scoring functions, used in statistics for eliciting risk\nfunctionals, as cost functions in the Monge-Kantorovich (MK) optimal transport\nproblem. This gives raise to a rich variety of novel asymmetric MK divergences,\nwhich subsume the family of Bregman-Wasserstein divergences. We show that for\ndistributions on the real line, the comonotonic coupling is optimal for the\nmajority the new divergences. Specifically, we derive the optimal coupling of\nthe MK divergences induced by functionals including the mean, generalised\nquantiles, expectiles, and shortfall measures. Furthermore, we show that while\nany elicitable law-invariant convex risk measure gives raise to infinitely many\nMK divergences, the comonotonic coupling is simultaneously optimal. The novel MK divergences, which can be efficiently calculated, open an array\nof applications in robust stochastic optimisation. We derive sharp bounds on\ndistortion risk measures under a Bregman-Wasserstein divergence constraint, and\nsolve for cost-efficient portfolio strategies under benchmark constraints.","PeriodicalId":501045,"journal":{"name":"arXiv - QuantFin - Portfolio Management","volume":"7 4","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2023-11-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Optimal Transport Divergences induced by Scoring Functions\",\"authors\":\"Silvana M. Pesenti, Steven Vanduffel\",\"doi\":\"arxiv-2311.12183\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"We employ scoring functions, used in statistics for eliciting risk\\nfunctionals, as cost functions in the Monge-Kantorovich (MK) optimal transport\\nproblem. This gives raise to a rich variety of novel asymmetric MK divergences,\\nwhich subsume the family of Bregman-Wasserstein divergences. We show that for\\ndistributions on the real line, the comonotonic coupling is optimal for the\\nmajority the new divergences. Specifically, we derive the optimal coupling of\\nthe MK divergences induced by functionals including the mean, generalised\\nquantiles, expectiles, and shortfall measures. Furthermore, we show that while\\nany elicitable law-invariant convex risk measure gives raise to infinitely many\\nMK divergences, the comonotonic coupling is simultaneously optimal. The novel MK divergences, which can be efficiently calculated, open an array\\nof applications in robust stochastic optimisation. We derive sharp bounds on\\ndistortion risk measures under a Bregman-Wasserstein divergence constraint, and\\nsolve for cost-efficient portfolio strategies under benchmark constraints.\",\"PeriodicalId\":501045,\"journal\":{\"name\":\"arXiv - QuantFin - Portfolio Management\",\"volume\":\"7 4\",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2023-11-20\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"arXiv - QuantFin - Portfolio Management\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/arxiv-2311.12183\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"arXiv - QuantFin - Portfolio Management","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/arxiv-2311.12183","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

我们使用评分函数,在统计中用于引出风险函数,作为Monge-Kantorovich (MK)最优运输问题中的成本函数。这就产生了多种新颖的不对称MK散度,其中包括Bregman-Wasserstein散度家族。结果表明,对于实线上的分布,大多数新散度的共频耦合是最优的。具体地说,我们推导了由包括均值、广义分位数、期望和缺口度量在内的泛函引起的MK发散的最佳耦合。进一步地,我们证明了当任何可引出的律不变凸风险测度引起无限多的ymk散度时,共频耦合同时是最优的。这种新颖的MK散度可以有效地计算,在鲁棒随机优化中开辟了一系列的应用。我们在Bregman-Wasserstein散度约束下导出了失真风险度量的尖锐界,并求解了基准约束下的成本效益投资组合策略。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Optimal Transport Divergences induced by Scoring Functions
We employ scoring functions, used in statistics for eliciting risk functionals, as cost functions in the Monge-Kantorovich (MK) optimal transport problem. This gives raise to a rich variety of novel asymmetric MK divergences, which subsume the family of Bregman-Wasserstein divergences. We show that for distributions on the real line, the comonotonic coupling is optimal for the majority the new divergences. Specifically, we derive the optimal coupling of the MK divergences induced by functionals including the mean, generalised quantiles, expectiles, and shortfall measures. Furthermore, we show that while any elicitable law-invariant convex risk measure gives raise to infinitely many MK divergences, the comonotonic coupling is simultaneously optimal. The novel MK divergences, which can be efficiently calculated, open an array of applications in robust stochastic optimisation. We derive sharp bounds on distortion risk measures under a Bregman-Wasserstein divergence constraint, and solve for cost-efficient portfolio strategies under benchmark constraints.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信